Space Weather Highlights 03 February - 09 February 2020

Solar activity was very low. The visible disk remained spotless and no Earth-directed CMEs were observed in available coronagraph imagery.

No proton events were observed at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit was between normal to high levels. High levels were reached on 08-09 Feb in response to a negative polarity CH HSS. Normal to moderate levels were observed for the remainder of the summary period.

Geomagnetic field activity ranged from quiet to active levels. Active levels were observed on 06-07 Feb in response to the onset of a negative polarity CH HSS, with wind speeds reaching a max near 650 km/s on 07 Feb. As wind speeds declined, unsettled conditions were observed on 08-09 Feb. Another isolated period of unsettled was observed on 04 Feb in response to sustained southward Bz. The remainder of the summary period was quiet.

Space Weather Outlook 10 February - 07 March 2020

Solar activity is expected to be at very low levels throughout the outlook period.

No proton events are expected at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to reach high levels over 10-14 Feb and 06-07 Mar in response to multiple CH HSSs. Normal to moderate levels are expected for the remainder of the outlook period.

Geomagnetic field activity is expected to range from quiet to G1 (Minor) geomagnetic storm levels. G1 (Minor) conditions are likely on 04 Mar in response to influence form a recurrent extension of the southern polar crown coronal hole. Active levels are likely on 11 Feb, 17 Feb, 26 Feb and 05 Mar; unsettled conditions are likely 12 Feb, 14 Feb, 18 Feb, 25 Feb and 27 Feb. These geomagnetic disturbances are anticipated from multiple, recurrent CH HSSs. The remainder of the outlook period is expected to be at quiet levels.

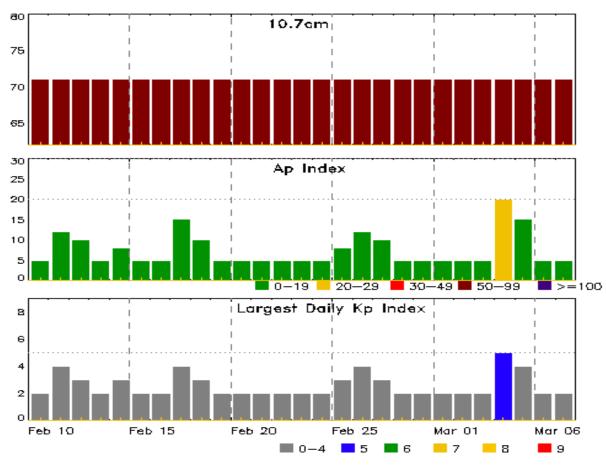
		-			~~~~						
Radio	Sun	Sur	spot	X-ray]	Flares			
Flux	spot	A	rea E	ackgrou	nd	X-	ray		0	ptical	
10.7cm	No.	(10 ⁻⁶	hemi.)	Flux		C N	A X	S	1	2 3	4
72	0	0	A8.1	0	0	0	0	0	0	0	0
70	0	0	A7.9	0	0	0	0	0	0	0	0
71	0	0	A7.9	0	0	0	0	0	0	0	0
71	0	0	A8.0	0	0	0	0	0	0	0	0
71	0	0	A8.3	0	0	0	0	0	0	0	0
72	0	0	A8.4	0	0	0	0	0	0	0	0
71	0	0	A8.2	0	0	0	0	0	0	0	0
	Flux 10.7cm 72 70 71 71 71 71 71 72	Flux spot 10.7cm No. 72 0 70 0 71 0 71 0 71 0 71 0 71 0 71 0 71 0 71 0 71 0	Radio Sun Sun Flux spot A: 10.7cm No. (10 ⁻⁶) 72 0 0 70 0 0 71 0 0 71 0 0 71 0 0 71 0 0 71 0 0 71 0 0 71 0 0	Radio Sun Sunspot Flux spot Area E 10.7cm No. (10 ⁻⁶ hemi.) E 72 0 0 A8.1 70 0 0 A7.9 71 0 0 A7.9 71 0 0 A8.0 71 0 0 A8.3 72 0 0 A8.3	Radio Sun Sunspot X-ray Flux spot Area Background 10.7cm No. (10 ⁻⁶ hemi.) Flux 72 0 0 A8.1 0 70 0 0 A7.9 0 71 0 0 A7.9 0 71 0 0 A8.0 0 71 0 0 A8.3 0 72 0 0 A8.3 0	Flux spot Area Background 10.7cm No. (10 ⁻⁶ hemi.) Flux 72 0 0 A8.1 0 0 70 0 0 A7.9 0 0 71 0 0 A7.9 0 0 71 0 0 A8.0 0 0 71 0 0 A8.3 0 0 71 0 0 A8.3 0 0 71 0 0 A8.4 0 0	Radio Sun Sunspot X-ray Flux spot Area Background X- 10.7cm No. (10 ⁻⁶ hemi.) Flux C M 72 0 0 A8.1 0 0 0 70 0 0 A7.9 0 0 0 71 0 0 A8.0 0 0 0 71 0 0 A8.3 0 0 0 71 0 0 A8.3 0 0 0 71 0 0 A8.4 0 0 0	RadioSunSunspotX-rayImage: Constraint of the systemFluxspotAreaBackground X -ray10.7cmNo. $(10^{-6}$ hemi.)FluxCM7200A8.10007000A7.90007100A7.90007100A8.00007100A8.30007200A8.4000	RadioSunSunspotX-rayFlaresFluxspotAreaBackground $X-ray$ -Flares10.7cmNo. $(10^{-6}$ hemi.)FluxCMXS7200A8.1000007000A7.9000007100A8.0000007100A8.3000007100A8.400000	RadioSunSunspotX-ray $Flares$ FluxspotAreaBackground $X-ray$ O 10.7cmNo. $(10^{-6}$ hemi.)Flux C MXS17200A8.100000007000A7.900000007100A8.0000000710A8.30000007200A8.400000	RadioSunSunspotX-ray BackgroundFlaresFlaresFluxspotAreaBackground $X-ray$ C $X-ray$ M $X-ray$ C $0 > 0 > 0 > 0 > 0 > 0 > 0 > 0 > 0 > 0 $

Daily Solar Data

Daily Particle Data

	-	Proton Fluer tons/cm ² -d	Electron Fluence (electrons/cm ² -day -sr)					
Date	>1 MeV	>10 MeV	>100 MeV	>0.	6 MeV	>2MeV	>4 MeV	
03 February	3.8e	+05	2.1e+04	3.9e+0	3	1.5e+07		
04 February	4.8e	+05	2.1e+04	3.8e+0	3	1.4e	+07	
05 February	1.9e	e+05	2.1e+04	3.7e+0	3	8.7e	+06	
06 February	1.1e	+06	2.1e+04	3.6e+0	3	2.2e	+06	
07 February	1.1e	+06	2.1e+04	3.9e+0	3.9e+03		+07	
08 February	3.9e+05		2.1e+04	4.3e+0	4.3e+03		+08	
09 February	2.7e	e+05	2.1e+04	4.0e+0	4.0e+03		+08	

Daily Geomagnetic Data


	M	Middle Latitude		High Latitude	Estimated			
	F	redericksburg		College	Planetary			
Date	А	K-indices	А	K-indices	А	K-indices		
03 February	3	1-1-1-0-1-1-1-1	4	1-1-3-2-1-0-0-0	5	2-2-2-1-1-1-0		
04 February	5	3-2-1-1-1-0-2	4	0-0-1-3-2-2-0-1	5	3-2-1-1-1-0-2		
05 February	4	1-1-2-2-1-1-0-1	3	1-0-0-3-1-0-0-0	5	1-2-2-2-1-1-0-1		
06 February	13	1-2-4-2-2-2-4-3	20	0-1-5-4-5-2-3-3	15	1-2-4-3-3-2-4-3		
07 February	11	2-3-3-1-2-2-3-3	18	3-3-3-4-5-2-2-2	15	3-3-3-2-3-3-3-4		
08 February	4	2-1-1-1-2-1-1	7	3-1-1-3-2-1-1	6	3-2-1-1-2-2-2-1		
09 February	5	3-1-1-1-2-1-1	2	0-0-2-2-0-1-0-0	15	3-2-1-1-2-2-2		

Date & Time of Issue UTC	Type of Alert or Warning	Date & Time of Event UTC
06 Feb 0651	WARNING: Geomagnetic K = 4	06/0650 - 1200
06 Feb 0724	ALERT: Geomagnetic $K = 4$	06/0723
06 Feb 2019	WARNING: Geomagnetic $K = 4$	06/2019 - 07/0300
06 Feb 2021	ALERT: Geomagnetic $K = 4$	06/2021
06 Feb 2030	WARNING: Geomagnetic $K = 5$	06/2030 - 2359
07 Feb 0252	EXTENDED WARNING: Geomagnetic K = 4	06/2019 - 07/1800
07 Feb 2312	WARNING: Geomagnetic $K = 4$	07/2315 - 08/0900
08 Feb 0001	ALERT: Geomagnetic $K = 4$	07/2359
08 Feb 1400	ALERT: Electron 2MeV Integral Flux >= 1000pfu	ı 08/1335
09 Feb 1221	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	08/1335

Alerts and Warnings Issued

Twenty-seven Day Outlook

Date	Radio Flux 10.7cm	Planetary A Index	Largest Kp Index	Date	Radio Flux 10.7cm	-	Largest Kp Index
10 Feb	71	5	2	24 Feb	71	5	2
11	71	12	4	25	71	8	3
12	71	10	3	26	71	12	4
13	71	5	2	27	71	10	3
14	71	8	3	28	71	5	2
15	71	5	2	29	71	5	2
16	71	5	2	01 Mar	71	5	2
17	71	15	4	02	71	5	2
18	71	10	3	03	71	5	2
19	71	5	2	04	71	20	5
20	71	5	2	05	71	15	4
21	71	5	2	06	71	5	2
22	71	5	2	07	71	5	2
23	71	5	2				

				E	nerge	tic Ev	ents						
	Time X-ray					Opti	cal Informat	ion	Р	eak	Sweep Freq		
			Half		Integ	Imp/	Location	Rgn	Radi	o Flux Inte		nsity	
Date	Begin	Max	Max	Class	Flux	Brtns	Lat CMD	#	245	2695	II	IV	
No Ev	vents O	bserve	d										
					Fla	re List	<u>.</u>						
								Optic	al				
		Tin	ne			X-ray	Imp/	L	ocation	R	gn		
Date	Begi	in N	Max	End		Class	Brtns	La	at CMD	4	#		
07 Feb	0420	0 0	421	0422		A1.1							

				Reg	gion S	Summ	ary								
	Locatio	on	Su	nspot C	haracte	ristics]	Flares	Flares			
		Helio	Area	Extent	Spot	Spot	Mag	Χ	K-ray			0	ptica	ıl	
Date	Lat CMD	Lon 1	0 ⁻⁶ hemi.	(helio)	Class	Count	Class	С	Μ	Х	S	1	2	3	4
		Regio	n 2757												
24 Jan	N04E30	85	10	3	Bxo	2	В								
25 Jan	N03E14	87	20	3	Bxo	4	В				1				
26 Jan	N04W01	89	60	5	Cao	8	В				1				
27 Jan	N05W14	89	100	5	Cso	2	В								
28 Jan	N04W28	90	70	5	Hsx	1	А								
29 Jan	N04W42	91	60	3	Hsx	1	А								
30 Jan	N04W56	92	60	3	Hsx	1	А								
31 Jan	N04W70	93	20	1	Hrx	1	А								
01 Feb	N03W84	94	10	1	Axx	1	А								
02 Feb	N03W98	94	plage					0	0	0	2	0	0	0	0
Crossec	l West Lim														

Absolute heliographic longitude: 89

				oniniy m	iean v							
		Sunspot N				Radio		Geomagnetic				
	Observed valu			oth values	Penticton			Planetary				
Month	SEC RI	RI/SEC	SEC	RI	1	0.7 cm	Value	Ap	Value			
2018												
February	16.0	6.4	0.40	13.7	7.6	72.0	73.3	7	9.1			
March	6.0	1.5	0.25	11.5	5.9	68.4	71.9	8	8.6			
April	7.0	5.3	0.76	9.6	4.7	70.0	70.6		8.0			
May	15.0	7.9	0.53	9.2	4.5	70.9	70.2		7.6			
June	19.7	9.4	0.48	9.1	4.3	72.5	70.0	7	7.4			
July	1.3	1.0	0.77	9.4	4.2	69.7	70.0		7.3			
August	10.0	5.2	0.53	9.0	4.0	69.1	70.0		7.3			
September	5.7	2.0	0.35	8.7	3.9	68.3	70.1	9	7.3			
October	6.9	2.9	0.42	9.2	4.1	69.5	70.3		7.1			
November	7.3	2.9	0.48	9.5	4.0	68.9	70.4		7.0			
December	5.6	1.9	0.34	9.3	3.6	70.0	70.3	7	6.9			
				2019								
January	16.0	4.6	0.29	9.0	3.2	71.6	70.0	6	6.8			
February		0.5		8.7	3.0	70.6	69.8		6.7			
March	14.8	5.6	0.39	8.3	2.8	71.5	69.7	6	6.6			
April	11.5	5.5	0.48	7.9	2.6	72.4	69.6	6	6.7			
May	18.1	5.9	0.34	7.4	2.3	71.3	69.6	7	6.7			
June	11.6	0.7	0.06	7.3	2.2	68.1	69.6	5	6.5			
July	1.6	0.5	0.31	7.0	2.1	67.1	69.7	6	6.3			
August	2.5	0.3	0.16			67.0		7				
September	2.6	0.7	0.27			68.1		10				
October	1.8	0.2	0.11			67.4		8				
November	1.1	0.3	0.27			70.2		4				
December	7.2	1.0	0.14			70.9		4				
				2020								
January	9.2	3.8	0.41			72.3		5				

Recent Solar Indices (preliminary) Observed monthly mean values

Note: Values are final except for the most recent 6 months which are considered preliminary. Cycle 24 started in Dec 2008 with an RI=1.7.

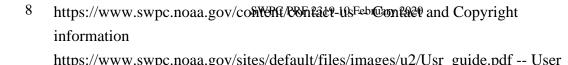
Preliminary Report and Forecast of Solar Geophysical Data (The Weekly)

Published every Monday by the Space Weather Prediction Center.

U.S. Department of Commerce NOAA / National Weather Service Space Weather Prediction Center 325 Broadway, Boulder CO 80305

Notice: The 27-day Outlook, Satellite Environment, X-ray and Proton plots have been redesigned. Comments and suggestions are welcome SWPC.Webmaster@noaa.gov

The Weekly has been published continuously since 1951 and is available online since 1997.


https://www.swpc.noaa.gov/products/weekly-highlights-and-27-day-forecast --

Current

ftp://ftp.swpc.noaa.gov/pub/warehouse -- Online archive from 1997

https://www.ngdc.noaa.gov/stp/satellite/goes-r.html -- NCEI GOES data textarchive

https://www.swpc.noaa.gov/products/solar-cycle-progression -- Solar Cycle Progression web site

