Solar activity was very low. A new spot group emerged in the SE quadrant on 07 Mar and was numbered Region 2758 (S29, L=229, class/area Cro/020 on 08 Mar). No Earth-directed CMEs were observed during the reporting period.

No proton events were observed at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit was at normal to moderate levels with a peak flux of 923 pfu observed at 02/1455 UTC.

Geomagnetic field activity ranged from quiet to unsettled levels. Solar wind parameters were slightly enhanced midday on 02 Mar as solar wind speed reached a peak of 488 km/s at 02/1318 UTC, likely due to a connection with an extension off the southern crown, polar coronal hole high speed stream (CH HSS). Solar wind speed gradually diminished to nominal levels by 04 Mar. The geomagnetic field responded with mostly quiet conditions with an isolated unsettled period observed on 04 Mar.

#### Space Weather Outlook 09 March - 04 April 2020

Solar activity is expected to continue at very low levels.

No proton events are expected at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to reach high levels on 19-21 Mar due to CH HSS influence.

Geomagnetic field activity is expected to be reach unsettled levels on 10-11, 18-20, 27-28 Mar and active levels on 19 and 27 Mar due to recurrent CH HSS effects. Mostly quiet levels are expected for the remainder of the outlook period.



# Daily Solar Data

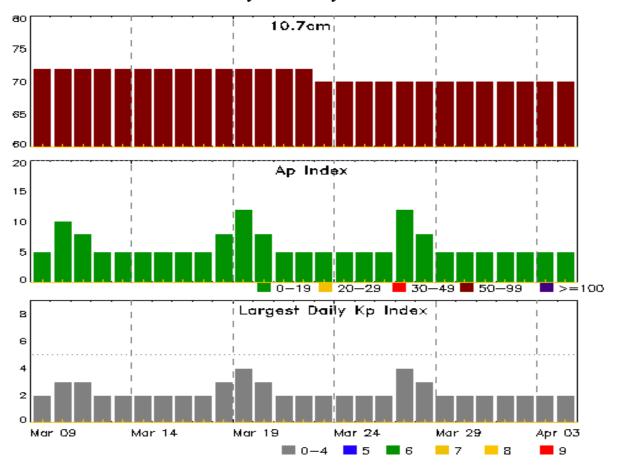
|          | Radio  | Sun  | Sunspot                  | X-ray      |   |      | F  | Flares |   |       |    |   |
|----------|--------|------|--------------------------|------------|---|------|----|--------|---|-------|----|---|
|          | Flux   | spot | Area                     | Background |   | X-ra | ay |        | C | )ptic | al |   |
| Date     | 10.7cm | No.  | (10 <sup>-6</sup> hemi.) | Flux       | C | M    | X  | S      | 1 | 2     | 3  | 4 |
| 02 March | 69     | 0    | 0                        | A0.0       | 0 | 0    | 0  | 0      | 0 | 0     | 0  | 0 |
| 03 March | 70     | 0    | 0                        | A0.0       | 0 | 0    | 0  | 0      | 0 | 0     | 0  | 0 |
| 04 March | 70     | 0    | 0                        | A0.0       | 0 | 0    | 0  | 0      | 0 | 0     | 0  | 0 |
| 05 March | 70     | 0    | 0                        | A0.0       | 0 | 0    | 0  | 0      | 0 | 0     | 0  | 0 |
| 06 March | 70     | 0    | 0                        | A0.0       | 0 | 0    | 0  | 0      | 0 | 0     | 0  | 0 |
| 07 March | 70     | 0    | 0                        | A0.0       | 0 | 0    | 0  | 0      | 0 | 0     | 0  | 0 |
| 08 March | 70     | 13   | 20                       | A0.0       | 0 | 0    | 0  | 0      | 0 | 0     | 0  | 0 |

# Daily Particle Data

|          |           | n Fluence<br>cm <sup>2</sup> -day -sr) | Electron Fluence (electrons/cm <sup>2</sup> -day -sr) |
|----------|-----------|----------------------------------------|-------------------------------------------------------|
| Date     | >1 MeV    | >10 MeV                                | >2MeV                                                 |
| 02 March | 1.3e+05   | 4.5e+04                                | 2.0e+07                                               |
| 03 March | 9.7e + 04 | 4.6e + 04                              | 8.9e+06                                               |
| 04 March | 1.0e + 05 | 4.6e + 04                              | 7.2e + 06                                             |
| 05 March | 2.0e+05   | 4.5e+04                                | 3.5e+06                                               |
| 06 March | 1.3e+05   | 4.6e + 04                              | 1.9e + 06                                             |
| 07 March | 2.1e+05   | 4.6e + 04                              | 1.3e+06                                               |
| 08 March | 1.5e+05   | 4.6e+04                                | 1.5e+06                                               |

# Daily Geomagnetic Data

|          |   | Middle Latitude |    | High Latitude   | Estimated |                 |  |  |  |
|----------|---|-----------------|----|-----------------|-----------|-----------------|--|--|--|
|          |   | Fredericksburg  |    | College         |           | Planetary       |  |  |  |
| Date     | A | A K-indices     |    | A K-indices     |           | K-indices       |  |  |  |
| 02 March | 4 | 2-1-0-1-2-2-1-1 | 5  | 1-0-0-3-3-0-0-1 | 5         | 2-1-1-1-2-1-1-1 |  |  |  |
| 03 March | 4 | 2-1-1-1-2-1-1-1 | 7  | 2-0-2-3-3-3-0-0 | 6         | 2-1-1-2-2-2-1-2 |  |  |  |
| 04 March | 4 | 0-2-1-1-2-2-1-1 | 9  | 0-0-2-4-3-3-2-1 | 7         | 0-2-1-1-2-3-2-2 |  |  |  |
| 05 March | 3 | 1-1-1-1-2-1-1-0 | 1  | 0-0-0-2-1-0-0-0 | 4         | 1-1-1-1-2-1-1-0 |  |  |  |
| 06 March | 4 | 1-1-1-2-2-2-1-0 | 7  | 0-0-0-4-3-3-0-0 | 5         | 1-1-1-2-2-2-0-0 |  |  |  |
| 07 March | 5 | 1-1-2-1-2-2-1-1 | 13 | 0-0-4-4-5-1-0-0 | 5         | 1-2-2-2-1-0-0   |  |  |  |
| 08 March | 3 | 1-1-2-0-1-1-1   | 2  | 1-0-0-1-1-1-1-0 | 5         | 1-2-2-1-1-1-2-1 |  |  |  |




# Alerts and Warnings Issued

|                                 | Date & Time  |
|---------------------------------|--------------|
| <b>Type of Alert or Warning</b> | of Event UTC |
| No Alerts or Warnings Issued    |              |
|                                 |              |



## Twenty-seven Day Outlook



| Date   | Radio Flux<br>10.7cm | Planetary<br>A Index | Largest<br>Kp Index | Date   | Radio Flux<br>10.7cm |    | Largest<br>Kp Index |
|--------|----------------------|----------------------|---------------------|--------|----------------------|----|---------------------|
| 09 Mar | 72                   | 5                    | 2                   | 23 Mar | 70                   | 5  | 2                   |
| 10     | 72                   | 10                   | 3                   | 24     | 70                   | 5  | 2                   |
| 11     | 72                   | 8                    | 3                   | 25     | 70                   | 5  | 2                   |
| 12     | 72                   | 5                    | 2                   | 26     | 70                   | 5  | 2                   |
| 13     | 72                   | 5                    | 2                   | 27     | 70                   | 12 | 4                   |
| 14     | 72                   | 5                    | 2                   | 28     | 70                   | 8  | 3                   |
| 15     | 72                   | 5                    | 2                   | 29     | 70                   | 5  | 2                   |
| 16     | 72                   | 5                    | 2                   | 30     | 70                   | 5  | 2                   |
| 17     | 72                   | 5                    | 2                   | 31     | 70                   | 5  | 2                   |
| 18     | 72                   | 8                    | 3                   | 01 Apr | 70                   | 5  | 2                   |
| 19     | 72                   | 12                   | 4                   | 02     | 70                   | 5  | 2                   |
| 20     | 72                   | 8                    | 3                   | 03     | 70                   | 5  | 2                   |
| 21     | 72                   | 5                    | 2                   | 04     | 70                   | 5  | 2                   |
| 22     | 72                   | 5                    | 2                   |        |                      |    |                     |



# Energetic Events

|      | Time  |     | X-   | X-ray Optical Information |      |       |          | P   | eak  | Sweep Freq |    |           |  |
|------|-------|-----|------|---------------------------|------|-------|----------|-----|------|------------|----|-----------|--|
|      |       |     | Half | Integ                     |      | Imp/  | Location | Rgn | Radi | Radio Flux |    | Intensity |  |
| Date | Begin | Max | Max  | Class                     | Flux | Brtns | Lat CMD  | #   | 245  | 2695       | II | IV        |  |

### **No Events Observed**

## Flare List

|        |       |      |      |   | Optical |       |          |     |  |  |  |  |
|--------|-------|------|------|---|---------|-------|----------|-----|--|--|--|--|
|        |       | Time |      | X | K-ray   | Imp/  | Location | Rgn |  |  |  |  |
| Date   | Begin | Max  | End  | C | Class   | Brtns | Lat CMD  | #   |  |  |  |  |
| 04 Mar | 1333  | 1334 | 1335 | A | 8.1     |       |          |     |  |  |  |  |

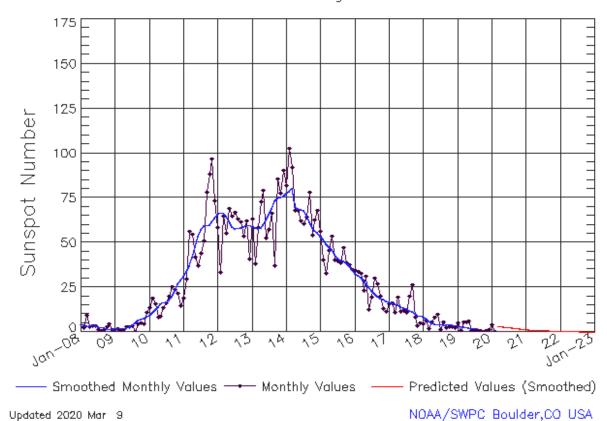


# Region Summary

|             | Location | nspot C | haracte                         | ristics |       | Flares |       |   |               |   |   |   |   |   |   |
|-------------|----------|---------|---------------------------------|---------|-------|--------|-------|---|---------------|---|---|---|---|---|---|
|             |          | Helio   | Helio Area Extent Spot Spot Mag |         |       |        |       |   | X-ray Optical |   |   |   |   |   |   |
| Date        | Lat CMD  | Lon 10  | 0 <sup>-6</sup> hemi.           | (helio) | Class | Count  | Class | C | M             | X | S | 1 | 2 | 3 | 4 |
| Region 2758 |          |         |                                 |         |       |        |       |   |               |   |   |   |   |   |   |
| 08 Mar      | S29E26   | 229     | 20                              | 3       | Cro   | 3      | В     | 0 | 0             | 0 | 0 | 0 | 0 | 0 | 0 |

Still on Disk. Absolute heliographic longitude: 229



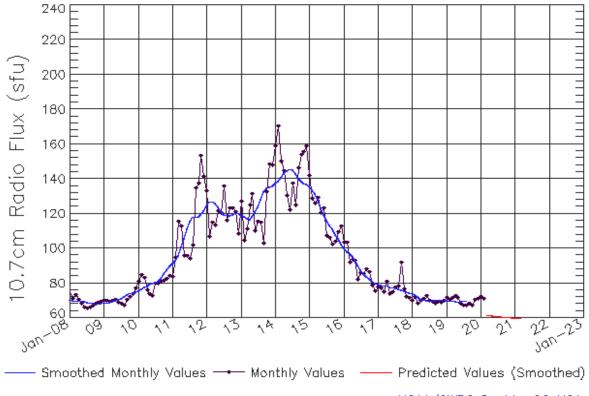

## Recent Solar Indices (preliminary) Observed monthly mean values

|           | S               | Sunspot N | umbers |           |     | Radio     | Flux   | Geoma     | gnetic |
|-----------|-----------------|-----------|--------|-----------|-----|-----------|--------|-----------|--------|
|           | Observed values | Ratio     | Smoo   | th values | _I  | Penticton | Smooth | Planetary | Smooth |
| Month     | SEC RI          | RI/SEC    | SEC    | RI        |     | 10.7 cm   | Value  | Ap        | Value  |
|           |                 |           |        | 2018      |     |           |        |           |        |
| March     | 6.0             | 1.5       | 0.25   | 11.5      | 5.9 | 68.4      | 71.9   | 8         | 8.6    |
| April     | 7.0             | 5.3       | 0.76   | 9.6       | 4.7 | 70.0      | 70.6   |           | 8.0    |
| May       | 15.0            | 7.9       | 0.53   | 9.2       | 4.5 | 70.9      | 70.2   |           | 7.6    |
| June      | 19.7            | 9.4       | 0.48   | 9.1       | 4.3 | 72.5      | 70.0   | 7         | 7.4    |
| July      | 1.3             | 1.0       | 0.77   | 9.4       | 4.2 | 69.7      | 70.0   |           | 7.3    |
| August    | 10.0            | 5.2       | 0.53   | 9.0       | 4.0 | 69.1      | 70.0   |           | 7.3    |
| September | 5.7             | 2.0       | 0.35   | 8.7       | 3.9 | 68.3      | 70.1   | 9         | 7.3    |
| October   | 6.9             | 2.9       | 0.42   | 9.2       | 4.1 | 69.5      | 70.3   | 7         | 7.1    |
| November  | 7.3             | 2.9       | 0.48   | 9.5       | 4.0 | 68.9      | 70.4   | 6         | 7.0    |
| December  | 5.6             | 1.9       | 0.34   | 9.3       | 3.6 | 70.0      | 70.3   | 7         | 6.9    |
|           |                 |           |        | 2019      |     |           |        |           |        |
| January   | 16.0            | 4.6       | 0.29   | 9.0       | 3.2 | 71.6      | 70.0   | 6         | 6.8    |
| February  |                 | 0.5       |        | 8.7       | 3.0 | 70.6      | 69.8   | 7         | 6.7    |
| March     | 14.8            | 5.6       | 0.39   | 8.3       | 2.8 | 71.5      | 69.7   | 6         | 6.6    |
| April     | 11.5            | 5.5       | 0.48   | 7.9       | 2.6 | 72.4      | 69.6   | 6         | 6.7    |
| May       | 18.1            | 5.9       | 0.34   | 7.4       | 2.3 | 71.3      | 69.6   | 7         | 6.7    |
| June      | 11.6            | 0.7       | 0.06   | 7.3       | 2.2 | 68.1      | 69.6   | 5         | 6.5    |
| July      | 1.6             | 0.5       | 0.31   | 7.0       | 2.1 | 67.1      | 69.7   | 6         | 6.3    |
| August    | 2.5             | 0.3       | 0.16   | 7.0       | 2.1 | 67.0      | 69.8   | 7         | 6.2    |
| September | 2.6             | 0.7       | 0.27   |           |     | 68.1      |        | 10        |        |
| October   | 1.8             | 0.2       | 0.11   |           |     | 67.4      |        | 8         |        |
| November  | 1.1             | 0.3       | 0.27   |           |     | 70.2      |        | 4         |        |
| December  | 7.2             | 1.0       | 0.14   |           |     | 70.9      |        | 4         |        |
|           |                 |           |        | 2020      |     |           |        |           |        |
| January   | 9.2             | 3.8       | 0.41   | -         |     | 72.3      |        | 5         |        |
| February  | 5.5             | 0.2       | 0.04   |           |     | 71.0      |        | 6         |        |

**Note:** Values are final except for the most recent 6 months which are considered preliminary. Cycle 24 started in Dec 2008 with an RI=1.7.



# ISES Solar Cycle Sunspot Number Progression Observed data through Feb 2020



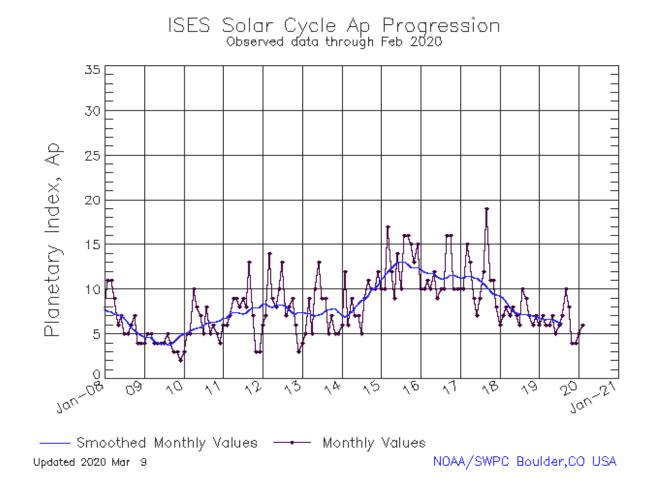

Smoothed Sunspot Number Prediction

| Year | Jan   | Feb   | Mar   | Apr   | May   | Jun   | Jul   | Aug   | Sep   | Oct   | Nov   | Dec   |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 2016 | 33    | 32    | 30    | 29    | 27    | 25    | 23    | 22    | 20    | 19    | 18    | 17    |
|      | (***) | (***) | (***) | (***) | (***) | (***) | (***) | (***) | (***) | (***) | (***) | (***) |
| 2017 | 17    | 16    | 15    | 15    | 14    | 13    | 13    | 12    | 11    | 10    | 9     | 9     |
|      | (***) | (***) | (***) | (***) | (***) | (***) | (***) | (***) | (***) | (***) | (***) | (***) |
| 2018 | 9     | 8     | 6     | 5     | 5     | 4     | 4     | 4     | 4     | 4     | 4     | 4     |
|      | (***) | (***) | (***) | (***) | (***) | (***) | (***) | (***) | (***) | (***) | (***) | (***) |
| 2019 | 3     | 3     | 3     | 3     | 2     | 2     | 2     | 2     | 2     | 2     | 2     | 2     |
|      | (***) | (***) | (***) | (***) | (***) | (***) | (***) | (***) | (1)   | (2)   | (3)   | (5)   |
| 2020 | 2     | 2     | 2     | 2     | 2     | 2     | 2     | 2     | 2     | 2     | 2     | 2     |
|      | (5)   | (6)   | (7)   | (7)   | (8)   | (9)   | (9)   | (10)  | (10)  | (10)  | (10)  | (10)  |
| 2021 | 2     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |
|      | (10)  | (10)  | (10)  | (10)  | (10)  | (10)  | (10)  | (10)  | (10)  | (10)  | (10)  | (10)  |
| 2022 | 1     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
|      | (10)  | (10)  | (10)  | (10)  | (10)  | (10)  | (10)  | (10)  | (10)  | (10)  | (10)  | (10)  |



# ISES Solar Cycle F10.7cm Radio Flux Progression Observed data through Feb 2020




Updated 2020 Mar 9

NOAA/SWPC Boulder,CO USA

### Smoothed F10.7cm Radio Flux Prediction

| Year | Jan   | Feb   | Mar   | Apr   | May   | Jun   | Jul   | Aug   | Sep   | Oct   | Nov   | Dec   |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 2016 | 100   | 98    | 97    | 95    | 93    | 90    | 88    | 86    | 84    | 83    | 81    | 80    |
|      | (***) | (***) | (***) | (***) | (***) | (***) | (***) | (***) | (***) | (***) | (***) | (***) |
| 2017 | 79    | 79    | 79    | 78    | 78    | 77    | 77    | 76    | 76    | 75    | 75    | 74    |
|      | (***) | (***) | (***) | (***) | (***) | (***) | (***) | (***) | (***) | (***) | (***) | (***) |
| 2018 | 74    | 73    | 72    | 71    | 70    | 70    | 70    | 70    | 70    | 70    | 70    | 70    |
|      | (***) | (***) | (***) | (***) | (***) | (***) | (***) | (***) | (***) | (***) | (***) | (***) |
| 2019 | 70    | 70    | 70    | 70    | 70    | 70    | 70    | 70    | 69    | 69    | 68    | 67    |
|      | (***) | (***) | (***) | (***) | (***) | (***) | (***) | (***) | (1)   | (1)   | (2)   | (3)   |
| 2020 | 66    | 66    | 65    | 65    | 64    | 63    | 62    | 61    | 61    | 60    | 60    | 60    |
|      | (4)   | (4)   | (5)   | (6)   | (7)   | (8)   | (8)   | (9)   | (9)   | (9)   | (9)   | (9)   |
| 2021 | 60    | 60    | 60    | 60    | 60    | 60    | 60    | 59    | 59    | 59    | 59    | 59    |
|      | (9)   | (9)   | (9)   | (9)   | (9)   | (9)   | (9)   | (9)   | (9)   | (9)   | (9)   | (9)   |
| 2022 | 59    | 59    | 59    | 59    | 59    | 59    | 59    | 59    | 59    | 59    | 59    | 59    |
|      | (9)   | (9)   | (9)   | (9)   | (9)   | (9)   | (9)   | (9)   | (9)   | (9)   | (9)   | (9)   |





Solar Cycle Comparison charts are temporarily unavailable.



#### Preliminary Report and Forecast of Solar Geophysical Data (The Weekly)

Published every Monday by the Space Weather Prediction Center.

U.S. Department of Commerce NOAA / National Weather Service Space Weather Prediction Center 325 Broadway, Boulder CO 80305

**Notice:** The 27-day Outlook, Satellite Environment, X-ray and Proton plots have been redesigned. Comments and suggestions are welcome SWPC.Webmaster@noaa.gov

The Weekly has been published continuously since 1951 and is available online since 1997.

https://www.swpc.noaa.gov/products/weekly-highlights-and-27-day-forecast --

Current

ftp://ftp.swpc.noaa.gov/pub/warehouse -- Online archive from 1997

https://www.ngdc.noaa.gov/stp/satellite/goes-r.html -- NCEI GOES data

textarchive

https://www.swpc.noaa.gov/products/solar-cycle-progression -- Solar Cycle

Progression web site

https://www.swpc.noaa.gov/content/contact-us -- Contact and Copyright

information

https://www.swpc.noaa.gov/sites/default/files/images/u2/Usr\_guide.pdf -- User

Guide

