

THE HINODE SATELLITE

- Orbits at about 500-600km above the Earth.
- Launched in September,2006
- Hinode has a polar orbit
- Hinode has the ability to observe the full sun or just a partial region.

THE IMPORTANCE OF OUR PROJECT

http://data.allenai.org/tqa/layers_of_the_atmosphere_L_0023/

- Soft x-rays are important because they show many magnetic field configurations and have a wide temperature coverage.
- Soft x-rays are absorbed in the ionosphere.

- Solar irradiance is the amount of light energy from the sun that is measured on Earth.
- Space Weather can interfere with Earth communications, overload power grids, and cause geomagnetic storms.

PROJECT OVERVIEW

- Our project was focused on using soft xrays from the XRT.
- We used the XRT Synoptic Composite Image Archive created by MSU.
- 2008-present day
- Thin-Be filter: measure higher temperatures
- Al-mesh filter: measure lower temperatures
- Our goal was to measure the average temperature and emission measure of the sun and calculate irradiance.

STEP 1:DATA SELECTION

SAVED DATA

Year	# of data
2008	22
2009	43
2010	0
2011	117
2012	108
2013	135
2014	107
2015	351
2016	213
2017	154
2018	557
2019	1287
2020	1054
2021	398
Total	4572

STEP 2: SIGNAL COLLECTION

- My next step was to put masks around the images.
- 1.1 radii of the sun
- Then modified a program to plot the intensities.

FINDING INTENSITY Al-mesh(blue) & thin_Be(yellow) signals

STEP 3: FINDING TEMPERATURE AND EMISSION MEASURE

- The filter-ratio method is the key to finding the average coronal temperature and the average emission measure.
- Using the ratio of two different filters, we are left with the function of temperature. With that we can also go back and find the emission measure.
- I ran a program that used the filterratio method to find the temperature and emission measures of the Almesh and thin-Be filters.

$$R_{ij} \equiv \frac{DN_i/\delta t_i}{DN_j/\delta t_j} = \frac{F_i(T)}{F_j(T)}.$$

$$\varepsilon = \int_{0}^{\infty} N_{\rm e}^{2}(l)dl \cdot d\sigma. \tag{4}$$

TEMPERATURE RESPONSE FUNCTIONS AND FILTER RATIO

TEMPERATURE AND EMISSION MEASURE

STEP4:FINDING IRRADIANCE

- We converted the temperature and emission measure to solar imadiance in the umit off W/by/using/theitsothermal doothanapectra real spletted
- by Chliateti atochianti databiaseatabase.
- •• Whe then integrated over the wavelengths range of 5-60 (Å) XRT spectral

 XRTponsetral response

XRT SPECTRAL RESPONSE

IRRADIANCE OF AM/TB

STEP5:COMPARISON

- Previous Study
 - O Al-mesh/Ti-poly (2006-2015)
 - O Al-mesh/Al-poly (2015-2020)
- Sunspot Numbers
 - O Silso
 - O https://wwwbis.sidc.be
 /silso/
- The following plots have smoothed data points for easier comparison

TEMPERATURE AND EMISSION MEASURE COMPARISON

IRRADIANCE COMPARISON

COMPARISON OF SUNSPOT NUMBER AND XRT IRRADIANCE

SUMMARY

- We successfully found the temperature, emission measure, and irradiance of the thin-be and al-mesh filter pair.
- The plots follow the 11 year cycle
- During the comparison with the previous study, we found that our study had a
 higher temp, but lower emission measure than the other study. We also see
 the direct correlation between the emission measure and the irradiance.
- Finally, the sunspot number is very similar to the irradiance.

REFERENCES

- \bibitem[Hara \emph{et al.}(1992)]{1992PASJ...44L.135H}Hara, H., Tsuneta, S., Lemen, J.R., Acton, L.W., and McTiernan, J.M.: 1992, {\it Publications of the Astronomical Society of Japan} {\bf 44}, L135.
- Lang, Kenneth R., et al. The Þcambridge Encyclopedia of the Sun. Cambridge University Press, 2001.
- Narukage, N., et al. "Coronal-Temperature-Diagnostic Capability of the Hinode/x-Ray Telescope Based on Self-Consistent Calibration." Solar Physics, vol. 269, no. 1, 2011, pp. 169–236., doi:10.1007/s11207-010-9685-2.
- Takeda, Aki, et al. "The Hinode/Xrt Full-Sun Image Corrections and the Improved SYNOPTIC Composite Image Archive." *Solar Physics*, vol. 291, no. 1, 2015, pp. 317–333., doi:10.1007/s11207-015-0823-8.
- "XRT (SAO, NASA, Jaxa, NAOJ)." The X-Ray Telescope on Solar-B, xrt.cfa.harvard.edu/index.php.

THANK YOU

- Special Thanks to Aki Takeda, Suman Panda, and all the mentors for guiding me on this journey.
 - Thank you to all my fellow students who supported me along the way.

FILTER RATIO METHOD

$$E_{i} = \frac{1}{4\pi D^{2}} \int_{0}^{\infty} \int_{\lambda} N_{\rm e}^{2}(l) P[\lambda, T(l)] \eta_{i}(\lambda) d\lambda dl \cdot d\sigma, \quad (1) \qquad DN_{i} = f_{i}(T) \varepsilon \delta t_{i}.$$

$$DN_i = f_i(T) \varepsilon \delta t_i. \tag{5}$$

$$E_i = \frac{1}{4\pi D^2} F_i(T)\varepsilon, \tag{2}$$

$$R_{ij} \equiv \frac{DN_i/\delta t_i}{DN_j/\delta t_j} = \frac{F_i(T)}{F_j(T)}.$$
 (6)

$$F_i = \int_{\lambda} P(\lambda, T) \eta_i(\lambda) d\lambda \tag{3}$$

$$N_i = E_i/3.65k_e$$

$$\varepsilon = \int_0^\infty N_{\rm e}^2(l)dl \cdot d\sigma. \tag{4}$$

$$DN_i = N_i \delta t_i / 100,$$

Equations used from Hara et al (1992)