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Figure 6: Representation of the change of connectivity matrix for AR 10273

In the above figures, red and black circles represent positive and negative flux regions, respec-
tively. Inside each circle, the top number is the pre–algorithm change in flux relative to a previous
timestep; when present, the bottom number is the flux change after submerging/emerging pairs
have been identified. Lines between circles represent elements of the∆φ matrix, M , ordered
(A,B,C. . . ) by participation in the algorithm. Numbers on each line indicate the strength of the
connection. This example has a net amount (+1) of emerging flux. A contrasting algorithm’s
connections are shown in Figure 5, in which each region connects to its closest neighbor of
opposite polarity. This connection scheme produces unphysical simultaneous submergence and
emergence in single poles.
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Figure 5: A different algorithm, connecting a
region to the closet neighbor of opposite polar-
ity.
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Figure 4: Example progression of the flux–
change removal algorithm.
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Figure 3: Flux (in Gauss) over time for AR 10273

The Algorithm
The change–in–connectivity matrix is not unique and will depend on the algorithm used to pair up submerging
and emerging regions. Our algorithm avoids egregiously unphysical connections, such as those in Figure 5,
where single poles have simultaneous submerging and emerging flux.

For a set of poles at two different times,{P 1
i }&{P 2

i } , as in Figure 2, we do the following:

1. Create a symmetric change–in–connectivity–matrix,Mij

2. Calculate the change in flux for each pole:∆φi = φ2
i − φ1

i

3. Find pole with smallest (but non–zero) changing flux,Pm, with flux change∆φm

4. FindPm’s nearest neighbor of opposite polarity and same sense in∆φ, Pc

5. For Pm andPc, cancel the minimum change in flux, min
(

|∆φm|, |∆φc|
)

, from both∆φm and∆φc, and
encode that in the change–in–connectivity–matrix atMcm andMmc

6. Repeat steps 3–5 until no more submerging or emerging flux can be removed

An example run of this algorithm is depicted in Figure 4. The change–in–connectivity–matrixM represents an
expected map of submerging and emerging flux between pairs ofpoles. This matrix of flux change can then be
removed from the difference between the potential field’s connectivity matrix at two times; for example, as in
Figure 2. The remaining differences should then be due only to changes in the coronal magnetic field itself.

Figure 6 depicts the algorithm’s output for the magnetograms in Figure 2. Because the algorithm operates
on differences between sets of poles at different times, thesame set of connections has been plotted at both
timesteps.

Removing submerging/emerging flux
Figure 3 shows the positive, negative and total flux for AR 10273 over the course of one day.
Note that there is a net amount of positive flux, both the positive and negative flux regions are
emerging, and that the positive flux is emerging faster. In order to use the MCC model to estimate
the amount of magnetic energy stored in coronal current ribbons, we need to remove the effects
of submerging and emerging flux. To do so, we identify pairs ofsubregions (poles) that are
submerging or emerging through the photosphere together bycreating a connectivity matrix for
flux change over time.

Minimum Current Corona[2][5]

The MCC model is a self–consistent, analytic model of quasi–static 3–D field evolution, which
relies on two assumptions:

1. Photospheric field is composed of discrete, unipolar regions surrounded by a contiguous region
of zero vertical flux

2. Corona evolves quasi–statically through a series of flux–constrained equilibria (FCE), fields
with the lowest magnetic energy that still match the photospheric boundary and contain the
prescribed distribution of domain fluxes

The coronal field resulting from assumption 2 is current–free except along separatrices of the
field. These ribbons of current store energy as stress in the internal field. The FCE fields have the
same domains as a potential field, but with different domain fluxes. The FCE field is defined to
minimize the magnetic energy, constraining each domain fluxto remain constant under variation
of the vector potentialA.

Figure 2: Potential field connectivity of AR 10273 at two different times

Connectivity[4]
We define topologically distinct flux systems asdomains, with each domain being the volume
containing magnetic flux connecting only two photospheric sources. The amount of flux in a
domain is the domain’sconnectivity. The MCC model fixes each domain’s connectivity to a
potential field’s connectivity at some time. At a later time,the potential field’s connectivity will
have changed, whereas the connectivity of each domain has been kept constant. Figure 2 shows
AR 10273’s potential field’s connectivity for two differenttimes, 96 minutes apart.
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Figure 1: AR 10273 before and after partitioning. Distance measured in Mm from disc center.

Partitioning[1, 3]
Partitioning the magnetogram occurs in three steps, via thegradient–based tesselation scheme:

1. Convolve the verticle field,Bz, with the Green’s function for a potential extrapolation upto a heighth from
an unbounded plane:

Kh(x, y) =
h/2π

(x2 + y2 + h2)3/2

2. Assign a unique label for all local maxima and every pixel strictly downhill with respect to|Kh ⋆ Bz| from
each maxima

3. Eliminate internal boundaries in unipolar regions when the saddle point|Bz| > min(|Bpk|) − Bsad, where
Bsad is a threshold

Figure 1 shows an example magnetogram before and after Partitioning. Each region is then characterized by
its net signed flux and centroid location

Φ =

∫

R
Bz(x, y) dx dy x̄ = Φ−1

∫

R
xBz(x, y) dx dy

We call the centroids, together with their associated net flux, sources or poles. Figure 1 depicts AR 10273
before and after partitioning, with each region labeled by it’s pole.

Overview
The Minimum Current Corona (MCC) model provides a way to estimate stored coronal energy
using the number of field lines connecting regions of positive and negative photospheric flux. This
information is quantified by the net flux connecting pairs of opposing regions in a connectivity
matrix. Changes in the coronal magnetic field, due processessuch as magnetic reconnection,
manifest themselves as changes in the connectivity matrix.However, the connectivity matrix
will also change when sources emerge or submerge through thephotosphere, as often happens in
active regions. We have developed an algorithm to estimate the changes in flux due to emergence
and submergence of magnetic flux sources. These estimated changes must be removed in order
to quantify storage and release of magnetic energy in the corona.

The present work uses magnetograms from the Michelson Doppler Interferometer on the SOHO
spacecraft, as in Figure 1. Lighter and darker pixels show vertical field,Bz(x, y), out of and into
the page respectively. For this particular magnetogram of AR 10273 (N06◦, W32◦), the verticle
field varies from2029G to−1642G.
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