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Figure 8: A null bifurcation, where a single photospheric null
(B14, B24, &B28 in the left panels) splits into a photospheric null
of opposite type (A29, A11, and A23 in the right panels), and a
coronal null (shown; B42 and B43 in the right panels) and mirror
null (not shown) of the original type.

Separator energy during a null bifurcation
The left panel of Figure 2 shows the skeleton for a subsection of
the magnetogram shown on the right in Figure 1, encompassing
poles N36 to P1, and up to N217, which the right panel shows the
same region a few hours later; in color are the separators, which,
after the pitchfork bifurcation shown in Figure 7, rise into the
corona. Using the methond described above, we have calculated
the energy stored at the separator for both the separators shown at
timestep 50 and for the red+green union of separators at time 55,
in Figure 2.

To our knowledge, this is the first time a null bifurcation has been
derived from observation, and the first time the energy stored in a
separator passing through a coronal null has been calculated.

Energetics
The domain fluxes can be calculated, eg., for a potential field, as
described by Barnes et al. 2005[5]. The resulting matrix Mi

P
represents the flux connecting each pair of poles at time i. The
potential field’s domain fluxes can change through two processes:
a change in the photospheric sources, ∆Mi

s, or a change in the
domain fluxes due to reconnection, ∆Mrx. Therefore, ∆Mi

P ≡
Mi+1
P −Mi

P = ∆Ms+∆Mrx. The change in photospheric sources
is just the sub/emerging connectivity we calculated above, so

∆Mi
rx = ∆MP −∆Ms (1)

The non–zero elements of the ∆Mi
rx matrix are then the self–

fluxes of current sheets formed at domain boundaries, or separa-
tors. For a separator of length L and current I the self–flux is

Ψ = IL
4π
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(
eI?

|I|
)

(2)

from which the excess energy of the MCC field relative to the
potential field is

∆WMCC = 1
4π

∫ Ψ

Ψpotl
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32π2
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)
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Both of the above equations, and the current I?, are derived and
precisely defined in Longcope & Magara 2004[3].

Figure 7: A pitchfork bifurcation, where a single photospheric null,
B14 in the left panels, splits into a photospheric null of opposite type,
A29, and a coronal null, B42, and a mirror null (not shown) in the
right panels. and mirror null (not shown) of the original type. The
coronal spine connects region P50 to P21.

In the figure at left, red and black
circles represent positive and nega-
tive flux regions, respectively. In-
side each circle, the top number
is the pre–algorithm change in flux
relative to a previous timestep; the
bottom number is the flux change
after sub/emerging pairs have been
identified. Lines between circles
represent elements of the flux–change
matrix ∆Ms, and are ordered (A,
B, C. . . ) by participation in the
algorithm. Numbers on each line
indicate the strength of the connec-
tion. This example has a net amount
(+1) of emerging flux.
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Figure 6: Example progression
of the flux–change removal al-
gorithm.

Accounting for photospheric changes
As demonstrated in both Figure 1 and Figure 5, the distribution,
number, and size of photospheric sources change substantially over
the course of days. We have an heuristic algorithm based on two
assumptions: (1) photospheric sources emerge and submerge in pairs;
and (2) sources with little flux change should be less connected than
those with big change. Algorithm 1 provides a precise method for
quantifying the amount of flux–change each pole undergoes due to
sub/emergence with other poles.

Representing time with superscripts and poles with subscripts, for a
set of poles {P} with fluxes {ψ}, we do the following:

Algorithm 1: Quantifying Sub/emerging Flux Change
begin1

∆ψij = ψi+1
j − ψij: The flux–change for each pole between2

consecuative timesteps;
repeat3

Pc← pole with smallest (but non–zero) changing flux,4

dψc;
Link Pc to its nearest neighbor of opposite polarity but5

same sense flux change, Pn;
Cancel dψc from ∆ψc and ∆ψn;6

∆Msc,n ← dψc;7

until no more connections can be made. ;8

end9

An example run of this algorithm is depicted in Figure 6. The
Resulting flux change matrix for sources, ∆Ms, represents a map
of submerging and emerging flux between pairs of poles.

Figure 5: Each plot shows the flux in each unipolar region a section of
the photosphere encompassing NOAA active regions 10488 and 10493
for MDI magnetograms, at a 96 minute cadence, starting on 2003-10-26.
Th upper plot is before filtering with the rmv ? algorithms. The lower
plot shows the effect of repeated passes with each of the algorithms.
The timesteps shown are, from top to bottom, 10, 30, and 50. Before
filtering, the 60 timesteps were populated with ≈ 1200 distinct unipolar
regions, and afterwards with ≈ 550.

Figure 4: Behavior of the rmv shift
algorithm, where the boundary be-
tween P1 and P2 has been ma-
nipulated in order maintain a more
constant flux in each region.

Figure 3: Typical behavior of
both the rmv flick and rmv vanish
algorithms.

For rmv shift we use a modified
version of Algorithm 1. We iden-
tify pairs of neighboring like–
polarity regions, where one has
increased flux, and the other de-
creased. This implies a shift-
ing boundary between the two
masks, as opposed to some un-
derlying change in the photospheric
field. rmv shift then adjusts the
boundary to minimize the flux–
change in each region, as illus-
trated in figure Figure 4.

The first two algorithms, rmv flick
and rmv vanish, have very sim-
ilar behavior, as shown in Figure
3. They basically amount to au-
tomatic relabeling that mimics a
simple, by–hand method.

Consistency in time
Photospheric sources constantly grow and shrink, break up, combine,
and change shape over time, as illustrated in Figure 1. Consistently
identifying regions over time is correspondingly difficult, so we have
3 phenomenologically–developed algorithms that counteract the 3 most
common causes of misidentification:

rmv flick removes regions that exist for a single timestep. The transient
region is merged with longer–lasting regions with which it overlaps

rmv vanish relabels regions that exist for many timesteps and then
abruptly change names

rmv shift adjusts the boundary between two regions in an attempt to
maintain the flux in each region

Data preparation
We track a region of the photosphere, in accordance with the sun’s
rotation, over a number of days, constituting N timesteps. At each
timestep, we break the resulting magnetogram into unipolar regions via
the downhill tesselation algorithm described in Barnes et al. 2005[5];
this defines a mask at each timestep identifying every pixel in the
magnetogram with a unique region. Each unipolar region is then
described by a topological pole, located at the flux–weighted centroid of
its corresponding region, and inheriting that region’s unprojected flux.
This process is depicted in Figure 1.

Contact

Lucas Tarr email: ltarr@physics.montana.edu
PhD Student address: Montana State University

Department of Physics
Bozeman, Mt 59715

phone: 971.533.0469

Minimum Current Corona[2][3]
While MCT provides a model for determining the initial topology
of a source region, we need an additional model to track and
quantify changes in the topology and the causes of those changes.
The MCC model provides a framework for this second step[4].
It is a self–consistent, analytic model of quasi–static 3–D field
evolution, which relies on two assumptions:

1. Photospheric field is composed of discrete, unipolar regions
surrounded by a contiguous region of zero vertical flux

2. The corona evolves quasi–statically through a series of flux–
constrained equilibria (FCE), fields with the lowest magnetic
energy that still match the photospheric boundary and contain
the prescribed distribution of domain fluxes

The coronal field resulting from assumption 2 is current–free
except along separators of the field. The separators store energy in
both the current sheet and magnetic tension. The FCE fields have
the same domains as a potential field, but with different domain
fluxes. The FCE field is defined to minimize the magnetic energy,
constraining each domain flux to remain constant under variation
of the vector potential A.

Figure 2: Topological skeleton of a subsection of Figure 1. Solid
lines are spines, dashed lines fans, and the dotted line in the
right hand panel is a coronal spine, which includes a coronal null
connected to three separators. Separators are shown in color.

Magnetic Charge Topology
We can describe photospheric/coronal fields, and their evolution,
topologically. The topology of a region derives directly from
photospheric sources. Approximating unipolar regions as point
sources allows one realistically quantify magnetic flux connecting
those regions and, most important for the present work, changes
in those interconnections. This is known as Magnetic Charge
Topology (MCT). Figure 1 shows an example of mapping an
MDI magnetogram to a set of point sources which match an
extrapolated photospheric field to the dipole term.

Rigorous definitions of relevant topological terms—nulls, spines,
fans, separators, &c.—can be found in Longcope&Klapper[1].
The connection of a field’s topological entities define its skeleton,
and example of which is shown at two different times for AR
10488 and AR10493 in Figure 2.

Figure 1: Section of the solar surface encompassing AR10488 and 10493, before and after partitioning, at two different times. Crosses and pluses show
the centroid location of each region, where each region’s associated pole is placed. Distance measured in Mm from disc center.

Abstract
The Minimum Current Corona (MCC) model provides a way
to estimate stored coronal energy using the number of field
lines connecting regions of positive and negative photospheric
flux. This information is quantified by the net flux connecting
pairs of opposing regions in a connectivity matrix. Changes
in the coronal magnetic field, due processes such as magnetic
reconnection, manifest themselves as changes in the connectivity
matrix. However, the connectivity matrix will also change when
sources emerge or submerge through the photosphere, as often
happens in active regions. We have developed an algorithm to
estimate the changes in flux due to emergence and submergence
of magnetic flux sources. These estimated changes must be
removed in order to quantify storage and release of magnetic
energy in the corona. To perform this calculation over extended
periods of time, we must additionally have a consistently labeled
connectivity matrix over the entire observational timespan. We
have therefore developed an automated tracking algorithm to
generate a consistent connectivity matrix as the photospheric
source regions evolve over time.
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