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ABSTRACT
One of the paradigms about coronal heating has been the belief that the mean or summit temperature

of a coronal loop is completely insensitive to the nature of the heating mechanisms. However, we point
out that the temperature proÐle along a coronal loop is highly sensitive to the form of the heating. For
example, when a steady state heating is balanced by thermal conduction, a uniform heating function
makes the heat Ñux a linear function of distance along the loop, while T 7@2 increases quadratically from
the coronal footpoints ; when the heating is concentrated near the coronal base, the heat Ñux is small
and the T 7@2 proÐle is Ñat above the base ; when the heat is focused near the summit of a loop, the heat
Ñux is constant and T 7@2 is a linear function of distance below the summit. It is therefore important to
determine how the heat deposition from particular heating mechanisms varies spatially within coronal
structures such as loops or arcades and to compare it to high-quality measurements of the temperature
proÐles.

We propose a new two-part approach to try and solve the coronal heating problem, namely, Ðrst of
all to use observed temperature proÐles to deduce the form of the heating, and second to use that
heating form to deduce the likely heating mechanism. In particular, we apply this philosophy to a pre-
liminary analysis of Yohkoh observations of the large-scale solar corona. This gives strong evidence
against heating concentrated near the loop base for such loops and suggests that heating uniformly dis-
tributed along the loop is slightly more likely than heating concentrated at the summit. The implication
is that large-scale loops are heated in situ throughout their length, rather than being a steady response
to low-lying heating near their feet or at their summits. Unless waves can be shown to produce a heating
close enough to uniform, the evidence is therefore at present for these large loops more in favor of turbu-
lent reconnection at many small randomly distributed current sheets, which is likely to be able to do so.
In addition, we suggest that the decline in coronal intensity by a factor of 100 from solar maximum to
solar minimum is a natural consequence of the observed ratio of magnetic Ðeld strength in active regions
and the quiet Sun ; the altitude of the maximum temperature in coronal holes may represent the dissi-
pation height of waves by turbulent phase mixing ; and the di†erence in maximum temperature inAlfve� n
closed and open regimes may be understood in terms of the roles of the conductive Ñux there.
Subject heading : Sun: corona

1. INTRODUCTION

The question about what mechanisms are heating the
solar corona is a fundamental one in astrophysics that has
deÐed physicists for half a century (e.g., Ulmschneider,
Priest, & Rosner 1991). We are now at a key point in our
attempts to answer it and hence in our understanding of the
solar corona. The Japanese/US/UK Yohkoh satellite has
been in operation for over 7 yr and has produced unprece-
dented detail on the complex interaction of coronal struc-
tures. We need therefore to absorb thoroughly the
implications of these spectacular observations for our
overall understanding of how the corona is heated so as to
appreciate which parts of the coronal heating puzzle have
been solved and which parts remain. At the same time, the
ESA-NASA SOHO satellite is working well, so we need to
decide on the best ways of using SOHO, the Transition
Region and Coronal Explorer (T RACE), and future missions
such as Solar B to tackle the coronal heating problem.
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The recognition that the global or summit temperature of
a coronal loop is completely insensitive to the nature of the
heating (Chiuderi, Einaudi, & Toricelli-Ciamponi 1981) led
to fears that we would not be able to determine the nature
of the heating mechanisms. In addition, we have developed
many models for the ways in which MHD waves behave or
current sheets form without being able to relate them to
observations of the corona.

The fact that, as we shall demonstrate here, the shape of
the temperature proÐle along a coronal loop and within a
coronal arcade is highly sensitive to the nature of the
heating opens a new door to deduce the heating mecha-
nisms. In turn, this is a stimulus to deduce the form of the
heating produced by di†erent mechanisms and to measure
temperature proÐles in coronal structures with as small an
error as possible.

In this paper, we review brieÑy the di†erent theories
(° 1.2) and observations (° 1.3) of coronal loops. We then
propose a new technique for trying to identify coronal
heating mechanisms building on the pioneering work of
Kano & Tsuneta (1996). We develop simple models for the
temperature structure above a million degrees Kelvin of
coronal loops (° 2) and coronal arcades (° 3). Next, we
compare the models with observed data on a large-scale
loop and arcade from Yohkoh and are able to determine the
likely form of the mechanism that is heating the large-scale
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corona (° 4). We also apply a similar technique to coronal
hole data (° 5) and consider basic questions about the global
behavior of the solar corona (° 6). Finally, we suggest a
strategy for tackling some of the remaining pieces of the
coronal heating jigsaw (° 7).

1.1. T he Nature of the Solar Corona
The corona consists of three distinct types of structure

when viewed in soft X-rays at moderate resolution (e.g.,
from Skylab), namely,

1. X-rayÈbright points, which are tiny intense regions
lasting for typically 8 hr and lying above oppositely directed
magnetic fragments in the photosphere ;

2. coronal loops, where the magnetic Ðeld is closed and is
able to contain regions of high density ; and

3. coronal holes, where the magnetic Ðeld is open, the
plasma density is low, and from which the fast solar wind
escapes.

The traditional unproved paradigm of coronal heating
has been that these three types of structure are likely to be
heated by three di†erent mechanisms. The majority feeling
has been that it is reasonable to expect that X-rayÈbright
points are likely to be heated by new magnetic Ñux emerg-
ing from below the photosphere and reconnecting with the
overlying Ðeld ; coronal loops are likely to be heated by the
dissipation of electric currents driven by footpoint motions,
for example, by nanoÑares in current concentrations pro-
duced by magnetic braiding, as in the nanoÑare model that
Parker (1994) has developed in a convincing manner ; and
coronal holes are likely to be heated by waves,Alfve� n
because no other mechanism has seemed possible.

However, several parts of this paradigm have been
recently challenged. First, most X-rayÈbright points are
now known to lie above Ñux that is cancelling rather than
emerging (Harvey 1984). This has led to a convincing
answer to the question what heats them, since the Can-
celling Flux Model has explained their observational
properties in a natural way in terms of magnetic reconnec-
tion driven by footpoint motions (Priest, Parnell, & Martin
1994). Nevertheless, the mechanisms for heating the coronal
loops and coronal holes have not yet been identiÐed, despite
several attempts to propose observational tests (Jordan
1992 ; Mason 1995 ; Waljeski, Dere, & Moses 1992 ; Zirker
1993 ; Cargill 1994a). Second, Y ohkoh observations
(Tsuneta 1996) have demonstrated that the heating of
coronal loops possesses two distinct components, splitting
the second element of the above classiÐcation into two
parts, namely,

2a. steady heating of coronal loops, which provides a
basal or background level, and

2b. impulsive heating of coronal loops, which raises the
temperature sporadically above the background.

Furthermore, it may well be the case that di†erent kinds
of loop are heated by di†erent mechanisms, although it
would be simpler and more elegant if only one mechanism
were dominant throughout the corona : if this were the case,
then the X-rayÈbright point results would favor magnetic
reconnection (e.g., Priest & Forbes 2000).

1.2. T heories of Coronal Heating
Theories for coronal heating have been reviewed by

several authors and fall into three di†erent types, namely,

bright-point heating, wave heating, and (possibly turbulent)
current sheet heating (Hollweg 1983 ; Heyvaerts 1990 ;
Cargill 1994b ; Vlahos 1994 ; Priest 1993, 1996). First of all, a
viable canceling Ñux model of how most bright points are
heated has been given by Priest et al. (1994), in which the
motion of photospheric fragments drives reconnection in
the overlying corona. It has been compared in detail with
observations of particular bright points from NIXT
(Parnell, Golub, & Priest 1994) and explains their internal
structure.

Second, the properties of waves have been studiedAlfve� n
in detail by Hollweg (1983), Roberts (1984), Goossens
(1991), Goedbloed (1983), Porter, Klimchuk, & Sturrock
(1994), and Klimchuk & Porter (1995). One way of dissi-
pating shear waves is by phase mixing (e.g., Hey-Alfve� n
vaerts & Priest 1983 ; Sakurai 1985 ; Cally 1991 ; Hood,
Ireland, & Priest 1997), while other MHD modes may su†er
resonant absorption (Tataronis & Grossman 1973 ; Goed-
bloed 1983 ; Poedts, Kerner, & Goossens 1989 ; Steinolfson
& Davila 1993 ; Ofman, Davila, & Steinolfson 1995).

A third class of theories is current-sheet heating. In
coronal loops and arcades, slow footpoint motions make
the coronal magnetic Ðeld try to evolve through a series of
equilibrium conÐgurations. Often, however, the equilibria
are not smooth but contain current concentrations
(sometimes singular) where dissipation can occur either
directly or indirectly at reconnection sites by conversion of
magnetic energy into kinetic energy, which eventually dissi-
pates in turbulent plasma motions (e.g., Hendrix & Van
Hoven 1996 ; Einaudi et al. 1996). There are several ways of
forming such sheets, namely, driven reconnection and Ñux
interaction, braiding, X-point collapse and shearing (Parker
1979, 1990 ; Low & Wolfson 1988 ; Vekstein & Priest 1992).
A recent numerical experiment on braiding by Galsgaard &
Nordlund (1996) shows that the Ðeld lines are braided by
one turn before they reconnect and that the resulting time-
averaged heating is rather uniform in many small current
sheets distributed through the medium (Galsgaard et al.
1999).

Many coronal heating mechanisms, such as braiding and
current sheet formation or resistive instabilities or waves, all
lead to a state of MHD turbulence. Heyvaerts & Priest
(1984) made a start at analyzing it by adapting TaylorÏs
relaxation theory to the coronal environment, in which the
Ðeld lines thread the boundary rather than being parallel to
it. Later, Heyvaerts, & Priest (1993) developed a new
approach in which the level of coronal turbulence is self-
consistently calculated.

1.3. Observations of Coronal L oops
Observations from the Soft X-Ray Telescope (SXT) on

board the Japanese Yohkoh satellite have revealed that the
corona is a complex magnetohydrodynamic system that is
highly time dependent and three dimensional (Ogawara et
al. 1991 ; Uchida 1993 ; Tsuneta 1996 ; Culhane 1997), with
myriads of magnetic loops continually evolving and inter-
acting. These observations have also given important clues
as to how the corona is heated. In particular, a distinction
has been revealed between local, time-dependent impulsive
components to the heating and global, steadier components
on a much larger scale (Tsuneta 1996 ; Acton 1996).

For example, in active regions there are tiny transient
brightenings (Shimizu et al. 1992), which are likely to be
driven by reconnection between multiple loops (like X-rayÈ
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bright points), but they fall short by a factor 5È10 of being
able to heat active-region loops. Furthermore, the hottest
loops in active regions (6È7 MK) appear to be multiple
structures that are interacting by reconnection or tiny cus-
plike features (Tsuneta 1996 ; Yoshida & Tsuneta 1996),
which may represent loops that are closing down by recon-
nection. Also, Shibata et al. (1995) have observed many
examples of X-ray jets accelerated from a variety of struc-
tures. On a large scale too there is a transient component in
the form of enormous cusp-shaped structures that form
after global eruptions associated with eruptive prominences
and coronal mass ejections (Tsuneta et al. 1992 ; Tsuneta &
Lemen 1993). Indeed, MacAllister (1999, private commu-
nication) Ðnds that most of the strongest coronal arcades
above large-scale polarity inversion lines at high latitudes
have formed in this manner.

Kano & Tsuneta (1996), Yoshida et al. (1995), Ichimoto et
al. (1995) Ðnd that the X-ray temperatures within active
regions range from 3 to 10 MK. The loop structures with
shorter lifetimes (less than a few hours) generally have high
temperatures and represent plasma transiently heated by
reconnection (Tsuneta 1996). By contrast, loops with longer
lifetimes are cooler, with temperatures of 2È4 MK, and rep-
resent plasma that is heated more steadily and uniformly
with a lifetime of 1 day or longer (Tsuneta 1996). Kano &
Tsuneta (1996) have obtained the temperature distribution
along steady loops and Ðnd two types, namely, proÐles of
trapezoidal or triangular type. In the latter case the conduc-
tive Ñux is constant either side of a localized region of heat
input. Also, Neupert et al. (1998) have used SOHO EIT
observations to study the structure of loops above an active
region. In quiet regions Krucker & Benz (1998) have shown
that EIT brightenings have a power law that is steep
enough to give nanoÑares enough energy to heat the corona
(if they do continue down at the same rate to small enough
events). Parnell & Jupp (2000) have repeated the analysis
using T RACE data for very much smaller events and Ðnd
that the spectrum does continue down at the same rate and
that it would need to continue down to energies of 4] 1024
ergs to provide the heating.

On larger scales weaker emission has been observed with
Yohkoh from large closed regions that extend up to 0.8 R

_above the limb and underlie coronal streamers. For
example, Sturrock, Wheatland, & Acton (1996) studied a
large magnetically closed region of the di†use corona and
from Ðlter ratios they deduced that the temperature
increases with radius from 1.6 MK at the limb to 2.3 MK at
1.5 They modeled this temperature variation approx-R

_
.

imately by assuming that the heat Ñux is constant and the
Ðeld lines radial. In ° 5 we present new observations with
lower errors and model them in a more realistic way.

Y ohkoh observations of coronal holes on the disc have
been reported by Hara et al. (1994), who evaluated the tem-
perature and emission measure from observations of equa-
torial holes on the disc and included a correction for X-ray
scattering by the telescope mirrors from sources of emission
visible on the rest of the solar surface. They found tem-
peratures for the individual coronal holes in the range
1.8È2.4 MK, which were similar to the values found for the
nearby quiet corona, while the electron density values were
about three times lower. More recently, Foley, Culhane, &
Acton (1997) have investigated the limb temperatures of
coronal holes and Ðnd them to be 1.1 MK at the limb and
1.35 MK at 1.15 which are lower than those reportedR

_
,

by Hara. By comparison the temperature of the ““ quiet ÏÏ
Sun outside active regions and coronal holes is about 2 MK
(Tsuneta 1996).

2. CORONAL LOOP MODELS

Consider the coronal part of a loop of cross-sectional
area A and temperature T in energy balance between
thermal conduction and heating such that

1
A(s)

d
ds
C
A(s)i0 T 5@2 dT

ds
D

\ [H , (2.1)

where s is the distance along the loop from one coronal
footpoint, is the coefficient of thermal conductioni0 T 5@2
(with J m~1 s~1), and H is the heatingi0\ 9.24 ] 10~12
rate per unit volume. Thus, in order of magnitude, the con-
duction has magnitude where 2L is the loopi0 T 7@2/L2,
length, and the optically thin radiation may be written as

in terms of the density and temperature-n
e
2 sT a (n

e
)

dependent parameters s and a. Radiation is therefore negli-
gible above a critical temperature which is typically(Tcrit),106 K for a loop having a half-length of 100 Mm and a
density of 108.5 cm~3, say (Fig. 1a).

Equation (2.1) may be integrated in general to give the
heat Ñux (which is negative) as

F(s) 4 [i0 T 5@2 dT
ds

\ [ 1
A(s)

P
s

L
H(s@)A(s@)ds@ , (2.2)

assuming that the temperature gradient dT /ds vanishes at
the loop summit (s \ L ). This in turn may be integrated to
give the temperature [T (s)] as a function of distance along
the loop as

T \ T0
C
1 [ 7

2i0 T 07@2
P
0

s
F(s@)ds@

D2@7

\ T0
C
1 ]

P
0

s 7
2i0A(s@)T 07@2

ds@

]
P
s@

L
H(s@@)A(s@@)ds@@

D2@7
, (2.3)

where the temperature at the coronal base of one foot-T0point (s \ 0).
Now let us examine the e†ect of di†erent forms of heating

on the heat Ñux and temperature proÐle, in each case taking
the loop area constant and assuming symmetry in loop
properties about the summit for simplicity. Many loops are
observed to have remarkably uniform cross sections
(Klimchuk et al. 1992), but the theory can easily be gener-
alized to include area variations. First of all, suppose the
heating is uniform along the loop Then the[H(s) \ H0].heat Ñux becomes a distinctive linear function of s,

F(s) \ [H0(L [ s) , (2.4)

in which the base value is a direct[F0\[F(0)\ H0 L ]
measure of the strength of the heating. The tem-(H0)perature is given in turn by

T (s) \ T0
A
1 ] H

L s [ s2/2
L2

B2@7
, (2.5)

where the parameter

H \ 7H0 L2
2i0 T 07@2

(2.6)
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FIG. 1.È(a) Dependence of the critical temperature above which conduction dominates radiation on loop density for di†erent loop half-lengths L (in(Tcrit)Mm) indicated on each curve. (b) Temperature (T ) as a function of distance (s) along a loop from coronal base (s \ 0) to summit (s \ L ) and its dependence on
the heating parameter when the heating is uniform.H \ 7H0 L2/(4i0 T 07@2) (H0)

is a measure of the ratio of heating to conduction and its
e†ect on the temperature proÐle is shown in Figure 1b. The
maximum (i.e., summit) temperature is

T
m

\ T0(1] 12H)2@7 . (2.7)

It can be seen how an increase in heating causes the(H0)heat Ñux (Fig. 2a, dotted curve) and temperature (Fig. 1b) to
increase and how the characteristic of uniform heating is
that T 7@2 increases parabolically with s.

Second, suppose the heating is uniform over a distance
from the base. Then the heat Ñux,L

H

F(s)\ 4
5
6
0
0
[H0(L H

[ s) , s \ L
H

,
0 , s [ L

H
,

(2.8)

FIG. 2.ÈAbsolute value of the heat Ñux ([F) as a function of distance
(s) along a loop is shown as a solid curve when (a) the heating is(H0)uniform for a distance from the base ; (b) the heating is uniform over aL

Hdistance from the summit (with the limit while isL
H

L
H

] 0 H0 L
H

\ f0held constant ; dot-dashed line). In both cases the examples of uniform
heating over the whole loop and of heating decaying away exponentially
from the base or summit are shown by dotted and dashed lines, respec-
tively.

is a linear function up to the point and zero beyond (Fig.L
H2a, solid curve), while the base value is now F0\ H0 L

H
.

The decrease in the total heat deposited in the loop for
the same value of therefore reduces the heat Ñux every-H0where in the heated part of the loop by a factor TheL

H
/L .

resulting temperature proÐle (Fig. 3a, solid curve) is

T (s) \
4
5
6

0
0

T0
A
1 ] H

L
H

s [ s2/2
L2

B2@7
, s \ L

H
\ L ,

T
m

, L
H

\ s \ L ,
(2.9)

where

T
m

\ T0(1] 12 HL
H
2 /L2)2@7 (2.10)

is the maximum (i.e., summit) temperature. Thus, as well as
creating a Ñat temperature proÐle near the summit, this
form of heating lowers the temperature gradient and the
temperature in the lower portion of the loop.

For the third type of heating suppose the heating is
uniform over a distance either side of the summit. ThisL

Hproduces a heat Ñux of

F\ 4
5
6
0
0
[H0 L

H
, 0 \ s ¹ L [ L

H
,

[H0(L [ s) , L [ L
H

\ s ¹ L ,
(2.11)

which therefore has the same proÐle as the uniform heating
case near the summit but is truncated near the base to the
constant value that represents the total heat depos-(H0 L

H
)

ited in the half-loop (Fig. 2b, solid curve). When theL [ L
H
,

temperature proÐle now becomes

T (s) \

4

5

6

0
0

T0
A
1 ] H

L
H

s
L2
B2@7

, 0¹ s ¹ L [ L
H

,

T0
G
1 ] H

C s
L

[
s2
2L2

[
(L [ L

H
)2

2L2
DH2@7

,

L [ L
H

\ s ¹ L .
(2.12)

When the loop temperature reverts to that of theL \ L
H
,

uniform case (eq. [2.5]).
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FIG. 3.ÈTemperature proÐle T (s) along a loop when the heating is (a)
uniform (dotted line), uniform over a length from the footpoint (solidL

Hline) or is of the form decaying over a distanceH \ H0 exp ([s/L
H
) L

Hfrom the footpoint (dashed line) ; (b) uniform over a length from theL
Hsummit (solid line) or concentrated at the summit (dot-dashed line) or of the

form decaying over a distance from the summitH0exp [(s [ L )/L
H
] L

H(dashed line).

As shown in Figure 3b (solid curve), T 7@2 therefore has a
linear proÐle in the region of no heating and a quadratic
proÐle where the heat is uniformly deposited. The
maximum temperature is

T
m

\ T0
C
1 ] H

AL
H

L
[ L

H
2

2L2
BD2@7

, (2.13)

so, when this is roughly the same form as equationL
H

> L ,
(2.7) for uniform heating but with the heat parameter H
reduced by a factor because of the reduction in the2L

H
/L

amount of heat deposited in the loop and of the heat Ñux
near the base. Furthermore, the summit temperature (eq.
[2.13]) is always smaller than the corresponding value (eq.
[2.7]) for uniform heating when L

H
\ L .

Fourth, consider the limit when approaches zero inL
Hcase three but with say, held constant so thatH0 L

H
\ f0,we have a Ðnite amount of heat deposited right at the top of

the loop. Then the heat Ñux is a constant

F\ [f0 , 0¹ s \ L , (2.14)

and the temperature is simply

T (s)\ T0
A
1 ] 7f0 s

2i0 T 07@2
B2@7

. (2.15)

Thus the function T 7@2 increases linearly from base to
summit (Fig. 3b, dot-dashed curve), where the temperature
reaches

T
m

\ T0
A
1 ] 7f0 L

2i0 T 07@2
B2@7

, (2.16)

so we have the same result as in equation (2.13) but without
the quadratic term. This temperature maximum is smaller
than the uniform heating case (eq. [2.7]) when L

H
\ 12L .

The e†ect of two other forms of heating is described in
Appendix A, namely, when the heating is decaying expo-
nentially away from the feet or summit.

3. CORONAL ARCADE MODELS

Now consider an arcade of coronal loops, one above
another, in each of which the temperature T (s) is given by
equation (2.3). How does the temperature variation with
altitude at the summits of the loops depend on the form of
the heating within each loop and the way the net heating
varies from one loop to another? The summit temperature

is given simply by T (L ), so, when the heating is uniform(T
s
)

along each loop but is allowed to vary from one loop to
another, equation (2.5) implies that

T
s
\ T0(1] 1

2
H)2@7 . (3.1)

If the heating is the same per unit volume for all loops, so
that this shows how increases with L . For a set ofH D L2, T

ssemicircular loops, for example, L \ nh/2, so it may be con-
verted to

T
s
\ T0

A
1 ] c

H
h2
R

_
2
B2@7

(3.2)

for the variation of summit temperature with height (h),
where c

H
\ 7H0R

_
2 n2/(16i0 T 07@2).If instead the base heating Ñux is the same(F0\ H0 L )

for each loop and the heating is uniform within each loop,
then

T
s
\ T0

A
1 ] c

F
h

R
_

B2@7
, (3.3)

where Thus a clear distinctionc
F
\ 7F0R

_
n/(8i0 T 07@2).between uniform-heat and uniform-Ñux arcades is that in

the former case increases quadratically with heightT
s
7@2

whereas in the latter it increases linearly (Figs. 4a and 4b,
dotted curves).

3.1. Semicircular Arcade
Next let us consider the e†ect on a similar arcade of the

di†erent forms of heating considered in the previous
section. If the heating is uniform over a distance alongL

Hthe loop from the base, so that the temperature in each loop
of the arcade is of the form of equation (2.10), then the
summit temperature in the arcade becomes (Fig. 4a, solid
curve)

T
s
\ 4

5
6
0
0

T0(1] c
H

h2/R
_
2 )2@7 , h \ h

H
,

T0(1] c
H

h
H
2 /R

_
2 )2@7 , h [ h

H
,

(3.4)

where is the height in the arcade below whichh
H

\ 2L
H
/n

the arcades are uniformly heated (Fig. 5b). For uniform-Ñux
arcades the corresponding proÐle (Fig. 4b, solid curve) is

T
s
\ T0

4
5
6
0
0
(1] hc

F
/R

_
)2@7 , h \ h

H
,

(1] h
H

c
F
/R

_
)2@7 , h [ h

H
.

(3.5)

Thus the characteristic feature of this type of heating is that
it Ñattens o† the temperature proÐle above the heighth

H
.

Third, consider a heating that is deposited uniformly over
a distance either side of the summit of each loop in theL

H
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FIG. 4.ÈSummit temperatures of loops in a coronal arcade as a function of height (h) (a) when the heating is the same per unit volume at the top of(T
s
)

each loop and within each loop the heating is uniform (dotted line), uniform up to a distance from the base (solid line), or of the formL
H

H \ H0 exp ([s/L
H
)

(dashed line) ; (b) when the heating is the same per unit volume at the top of each loop and is uniform within each loop down to a distance from the summitL
H(solid line), concentrated at the summit (dot-dashed line), or of the form (dashed line). When the heat Ñux at the base is the same onH \ H0 exp [(s [ L )/L

H
]

all loops, the proÐles are shown in (c) for a heating that is uniform (dotted line), truncated at a distance from the base (solid line) or exponentially decayingL
H(dashed line) and in (d) for heating truncated at a distance from the summit (solid line), concentrated at the summit (dot-dashed line) and exponentiallyL

Hdecaying from the summit as (dashed line).H0 exp ([s/L )

arcade (Fig. 5c), so that each loop proÐle is of the form of
equation (2.13) when or equation (2.7) whenL [ L

H
L \

The arcade proÐle then becomesL
H
.

T
s
\ 4

5
6
0
0
T0(1] c

H
h2/R

_
2 )2@7 , h \ h

H
,

T0[1] c
H

h
H
(2h [ h

H
)/R

_
2 ]2@7 , h [ h

H
,

(3.6)

for a uniform-heat arcade and

T
s
\ 4

5
6
0
0
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(3.7)

for a uniform-Ñux arcade, as shown by solid curves in
Figures 4c and 4d, respectively. Again, is theh

H
\ 2L

H
/n

height in the arcade below which there is uniform heating.
Thus the characteristic e†ect of such heating for a uniform-
heat arcade is to make increase quadratically at lowT

s
7@2

heights and linearly at large heights. For a uniform-Ñux
arcade it increases linearly at low heights and linearly at
large heights but with twice the gradient.

Fourth, the particular case when the heating is localized
at the summit of each loop (Fig. 5d) gives the summit tem-
perature for each loop as equation (2.16). The resulting
arcade proÐle is

T
s
\ T0(1] 2C

H
h/R

_
2 )2@7 (3.8)

for a uniform-heat arcade as graphed in Figure 4c (dot-
dashed curve) where The corre-C

H
\ 7f0R02 n/(8i0 T 07@2).sponding proÐle for a uniform Ñux arcade (Fig. 4d, dot-

dashed curve) is

T
s
\ T0(1] 2c

F
h/R

_
)2@7 . (3.9)
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FIG. 5.ÈLocation (shaded) of the heating region in the arcade for (a)
uniform heating, (b) heating near the base of each loop, (c) heating near the
loop summits, and (d) heating localized at the summits.

Thus we Ðnd that in this case increases linearly withT
S
7@2

height for both a uniform-heat and a uniform-Ñux arcade.
Other semicircular arcade models are discussed in Appen-
dix B.

3.2. L ine-Current Arcade
So far we have considered a heating that is independent

of magnetic Ðeld strength and an arcade of semicircular
Ðeld lines, but both of these assumptions may be easily
relaxed to produce more general models. For example, con-
sider Ðrst the potential arcade with circular Ðeld lines and a
magnetic Ðeld that is constant on each Ðeld line with magni-
tude

BÕ\ B
d
d

r
(3.10)

because of a line current submerged a distance d, say, below
the coronal base and giving a value at distance r \ dB

d(Fig. 6a). A Ðeld line that extends to a summit height h has a
footpoint with coordinates where The(r0, h0), r0\ d ] h.
length of such a Ðeld line from footpoint to summit is there-
fore where or, in otherL \ (12n[ h0)r0, r0 sin h0\ d,
words,

L (h) \ (d ] h) cos~1 d
d ] h

. (3.11)

At low heights it increases like h1@2 and at large heights like
h (Fig. 6b).

FIG. 6.È(a) Notation for the Ðeld due to a line current or a dipole at depth d, whose Ðeld lines have summit height h and footpoint coordinates (b)(r0, h0).Variation of the length (L ) of a Ðeld line with its summit height (h). (c) Summit temperature as a function of height (h) for heating that is uniform or(T
s
)

proportional to the square of the magnetic Ðeld due to a line current or a dipole.
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If the heating is uniform along each Ðeld line with, say,
the same base heating Ñux for each loop, the semicircular
arcade temperature (eq. [3.3]) is replaced by

T
s
\ T0

C
1 ] 2c

F
n

L (h)
R

_

D2@7
, (3.12)

where the function L (h) is given by equation (3.11). Suppose
now that each loop is uniformly heated along its length and
the heating Ñux at its base scales as the square of the mag-
netic Ðeld at the base. For a loop with a summit at an
altitude h, the base Ðeld is, according to equation (3.10),

and the summit temperature (eq. [3.12])B
o
\B

d
d/(d ] h)

becomes

T
s
\ T0

C
1 ] 2c

F0
n(1] h/d)2

L (h)
R

_

D2@7
, (3.13)

where the heating constant deÐned below equation(c
F0)(3.3) is evaluated at the arcade base. The resulting tem-

perature proÐles are shown in Figure 6c.
If we assume on the other hand that the volumetric

heating rate scales as the square of the local magnetic Ðeld,
the summit temperature becomes

T
s
\ T0

C
1 ] 4c

H0
pi2(1] h/d)2

L2(h)
R

_
2
D2@7

, (3.14)

where deÐned below equation (3.2) is evaluated at thec
H0arcade base.

The corresponding results for a dipole arcade are given in
Appendix C.

4. Y OHKOH OBSERVATIONS OF LOOPS AND ARCADES

Weak soft X-ray emission has been observed with Yohkoh
from large closed regions that extend up to 0.8 aboveR

_the limb and evolve slowly over long periods of time. Mag-
netic Ðeld extrapolations demonstrate that the largely struc-
tureless emission arises in large-scale magnetically closed
regions and almost always underlies coronal streamers
(Acton 1996). The visibility of speciÐc loops in an X-ray
image depends on the temperature and density contrast
along neighboring magnetic Ñux tubes. Low-altitude,
intensely heated loops are easily distinguished (Fig. 7a). At
large heights, entire loops may be seen (top left and top right
of Fig. 7a), but often only the parts near the base are inden-
tiÐable, arching round with a convex curvature toward the
solar limb (bottom right of Fig. 7a). We have analyzed in
detail the loop that is outlined in the top right of Figure 7a
and clearly shown in close-up in Figure 7b.

We carefully corrected the Soft X-Ray Telescope images
for the e†ect of radiation scattered from other areas of the
Sun because of the broad low-level wings of the telescope
point-spread function (Foley et al. 2000). The level of the
scattered signal amounts to about 5% of the observed Ñux
at the loop footpoints and 20% at the loop top (Foley 1998).
Temperatures were obtained by the Ðlter ratio technique
(Tsuneta et al. 1991) for a single di†use region. The data
were aligned to within 2A and corrected for the e†ects of
CCD saturation, dark noise, and particle hits. For example,
Figures 7È10 show a global image of the Sun on 1992
October 3, and the resulting temperature variation along
the length of a loop and with height at the symmetry axis of
an arcade. The temperature in such arcades rises rapidly
and levels o† at typically 2.2È2.3 MK at an altitude of 1.5

but according to Culhane (1997) and Kano & TsunetaR
_

,
(1996), the individual loops do not obey the usual scaling
law, namely, that T D (pL )1@3 (Rosner, Tucker, & Vaiana
1978). In any case it is the shape of the temperature proÐle
that matters for the present analysis rather than the absol-
ute temperature values, since a global increase or decrease
of temperature would not change the shape of the proÐle.

4.1. Errors
The errors in the temperature reÑect the statistical uncer-

tainty in the data as were presented by Sturrock et al.
(1996). The only departure from their work in our error
analysis is that a minimum count rate was used to deter-
mine the size of each bin along the loop. The errors within
the bin were summed in quadrature. The uncertainties in
the temperatures were determined as described in Klim-
chuck & Gary (1995).

A discussion of systematic errors associated with the
overall telescope calibration is included in Klimchuck &
Gary (1995) and Porter & Klimchuck (1995). These,
although estimated to be less than 2% of the intensity cali-
bration, were shown to be capable of introducing an uncer-
tainty into the temperatures determined here of the order
0.8 MK. However, the analysis that we perform is depen-
dent upon the proÐle of the temperature rather than the
absolute values of the temperature. Another source of sys-
tematic uncertainty in these data is that associated with
telescope scattered light. This can become important for
temperature proÐles obtained in the high corona since its
relative contribution increases with distance o† axis. The
possible e†ect of this uncertainty has been minimized by a
careful examination of the scattering characteristics
observed within the SXT images of solar Ñares.

4.2. L oop Analysis
To try to determine which form of heating best Ðts the

data, we analyzed three sets of observations of di†erent
quiet coronal loops and compared them with di†erent
models of heat deposition. The Ðrst data set is for the loop
shown in Figure 7 on the right limb. The second data set is
for the loop on the left limb in Figure 7, and the third set is
for a loop observed in the northern hemisphere on the 1992
June 3. For the Ðrst and third data sets the entire tem-
perature proÐle from footpoint to footpoint is compared
with the models, but for the second data set only half of the
loop is compared since an active region lying to the
southern end of the loop contaminates the data for the
other half of the loop.

The temperature variation for the Ðrst data set at 10
points is shown in Figure 8. It increases from 1.6 MK at one
coronal footpoint up to about 2.2 MK at the summit and
then falls to about 1.6 MK at the other footpoint. This type
of temperature proÐle is typical of all three data sets. We
have compared the observed temperature proÐles with the
models of ° 2 that have main steady state balance between
the dominant e†ects at these temperatures, namely, thermal
conduction and a heating that is assumed to depend only
on the distance along the loop. In doing so, for simplicity we
assume the observed structure is a loop in a plane perpen-
dicular to the line of sight and ignore projection e†ects that
should be incorporated in a more complete analysis. [If the
loop were inclined such that an element ds made a known
angle /(s) with the plane of the sky, then our basic equation
would still hold but with the cross section A(s) changed by a
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FIG. 7a

FIG. 7.ÈSoft X-ray images of the Sun on 1992 October 3 showing a loop on the right limb that we have analyzed in detail (a) outlined on a global image
and (b) in a close-up of the region.

factor cos /(s) and the heating H(s) changed by a factor
sec2 /(s).] The e†ects of radiation on the temperature pro-
Ðles are negligible at these temperatures : here radiation is
typically 10È100 times smaller than conduction in the
energy balance (depending on the density), which therefore
determines the temperature independently of the pressure
and density ; gravity makes the pressure and density fall o†
with height but does not inÑuence the temperature proÐle.
In the comparison, a variety of forms for the heating is
adopted. For each model the most likely values of the
parameters have been determined by a weighted least-
squares analysis, minimizing

j \ ;
i

[Tobs(si)[ Tmod(si)]2
p
i
2 , (4.1)

where is the width of the error bar in the measuredp
itemperature at distance (or altitude and is(Tobs) s

i
h
i
) Tmodthe corresponding model temperature. In theory, a better

statistical measurement of the minimization would be to use
a s2 analysis, in which would be the standard deviation ofp

iat To calculate at each point, one would require aTobs s
i
. p

i

distribution of which is not available in the presentTobs,data, so we adopt a simpler approach and normalize each
term in the Ðt with respect to the width of the error bar.
Dividing by the number (n) of degrees of freedom gives a
quantity (j/n) such that the lower the value of this param-
eter relative to other Ðts the better is the comparison
between the observed and model temperatures for a given
value of n. The absolute values of j/n have no rigorous
meaning, but the relative values for a given n enable one to
say which Ðt is better.

First of all, the data for the loop shown in Figure 7b have
been compared with three di†erent heating models. The
Ðrst one has a given base temperature and a maximum(T0)in its heating rate per unit volume at the loop base ; it(H0)decays exponentially along the loop over a distance L

H
\

0.1L , where L is the loop half-length, so that the tem-
perature proÐle is given by equation (A3). Minimization
with respect to the parameters and yielded a veryT0 H0poor Ðt for the temperature proÐle (Fig. 8a) with a j/n of 5.4.
The second model has a heat source concentrated at the
loop summit and a temperature proÐle given by equation
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FIG. 7b

(2.15). It gives a better Ðt (Fig. 8b) since the resulting value of
j/n (namely, 1.7) is smaller.

The third model has uniform heating and a tem-(H0)perature proÐle given by equation (2.5). The resulting mini-
mization gave a rather good Ðt with a j/n of 0.89 (Fig. 8c).
The corresponding values of and are 1.61 MK andT0 H
3.75, respectively. The latter gives a dimensional value of H0of 1.09 ] 10~6 J m~3 s~1, so for a loop half-length (L ) of
700 Mm this produces a base energy Ñux of

oF(0) o\ H0 L \ 760 J m~2 s~1
\ 7.6] 105 ergs cm~2 s~1 .

Finally, we repeated the procedure with equation (2.9)
but with as an extra parameter. Normally, one wouldL

Hexpect an extra such degree of freedom to lead to a better Ðt,
but in this case the j/n was found to be virtually the same as
for the uniform heating case. The proÐle (Fig. 8d) was
almost the same and was 20L and so much larger thanL

Hthe loop length.
We chose to study the temperature of the Ðrst loop at 10

points in order to reduce the measurement uncertainties as
much as possible while retaining a signiÐcant number of
points along the loop. For comparison, the corresponding
results for 74 points are shown in Figure 9. Here the error

with each point is much greater but the qualitative conclu-
sions are the same. The j/n values for each of the graphs are
(Fig. 9a) 0.71, (Fig. 9b) 0.5, (Fig. 9c) 0.35, and (Fig. 9d) 0.4.
Therefore, uniform heating again gives the lowest value,
with and equal to 1.62 MK and 3.51, respectively,T0 H
which are close to the previous values. It should be noted
here that as the number of points is increased from 10 to 74
the value of the minimization parameter decreases. All of
the values of (j/n) for 74 data points are less than those for
10 points since many more points are compared. However,
again uniform heating gives the best relative Ðt. The values
of j/n and an eye Ðt suggest that there is no real di†erence in
the Ðt of the models in Figs. 9b and 9d, but the model (Fig.
9c) of uniform heating certainly gives a better Ðt by eye. The
analysis certainly cannot rule out the models in Figs. 9b and
9d, and an explicit calculation of probability or statistical
signiÐcance is not possible since this is a weighted least-
squares method rather than a s2 method. Nevertheless, the
above comparison provides strong evidence against heating
concentrated near the loop base and suggests that heating
uniformly distributed along the loop is more likely than
heating concentrated at the summit.

In Figure 8c the theoretical curve does not pass through
the error bars of three of the points. However, if the sta-



FIG. 8.ÈFirst data set. Observed temperature in MK as a function of distance at 10 points along the loop on the right limb of Fig. 7a with the errors
shown. Also included are the best Ðt model temperatures for heating that is (a) decaying from the feet over a tenth of the loop length, (b) concentrated at the
summit, (c) uniform, and (d) decaying from the feet over a distance L

H
.

FIG. 9.ÈSame as Fig. 8 but with temperature measured at 74 points along the loop
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FIG. 10.ÈResults for the second data set on the left (from the loop on the left limb of Fig. 7a) and for the third data set on the right (from a loop on 1992
June 3).

tistical error bars are increased by only 60% to include
systematic errors such as contamination along the line of
sight, the curve passes through all the points and uniform
heating remains a much better Ðt than heating concentrated
near the footpoints.

From the analysis it can be seen that the temperature
proÐle along the quiet coronal loop seen on the right of
Figure 7a is more likely to be produced by uniform heating
than the three others forms considered. The Ðtting pro-
cedure was next repeated for the second and third data sets.
For the second data set 33 points along half of the loop on
the left limb of Figure 7a were compared with the models
and for the third data set 74 points along the whole loop
length were used. The results can be seen in Figure 10. The
Ðts are shown for (Fig. 10a) heat decaying exponentially
from the base (Fig. 10b) heat localized at the(L

H
\ 0.1L ),

top, and (Fig. 10c) uniform heating. For the second data set
it can be clearly seen that uniform heating again produces
the best Ðt with a j/n value of 0.35 (T0\ 1.51, H0\ 8.55)
compared to a j/n of 2.6 for heat decaying from the base
and 0.47 for heat localized at the summit. For the third data

set uniform heating gives a j/n value of 1.23 (T0\ 1.76,
compared to 1.41 for exponential decay from theH0\ 2.64)

base and 1.42 for heat localized at the top. Even though
these values lie closer together than the other data sets,
uniform heating still produces the best Ðt, as a visual inspec-
tion of Figure 10 would suggest. For all three data sets,
therefore, uniform heating along the loop is more likely to
produce the observed temperature proÐles than heat decay-
ing from the footpoints or heat localized at the top.

4.3. Arcade Analysis
The loop outlined in Figure 7 represents the outermost

loop of a beautiful arcade of loops arching high above the
solar surface, so we decided to measure the temperature at
the summits of the loops as a function of height, as shown in
Figure 11. Again we neglect projection e†ects and assume
we are observing a nested set of loops one above the other
in a plane perpendicular to the line of sight.

We Ðrst considered the model given by equation (3.2) in
which the heating is deposited uniformly throughout the
whole arcade, so that the heating Ñux on each loop is pro-
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FIG. 11.ÈObserved temperature as a function of height at the summits of the loops that comprise the arcade whose outermost loop is indicated in Fig. 6a.
The temperature (in MK) is shown as a function of distance from the solar center (in units of 1 Mm) for models with a uniform heating on eachR

_
\ 700

loop but with a Ñux that is (a) proportional to loop length, (b) uniform, (c) proportional to the square of the arcade magnetic Ðeld, and (d) proportional to the
arcade magnetic Ðeld.

portional to loop length and found a poor Ðt (Fig. 11a) with
a j/n of 4.95. Next, we assumed instead the same heating
Ñux on each loop and so found the best-Ðtting model of the
form of equation (3.3). This gave a better Ðt with a j/n of
1.83 (Fig. 11b). It is consistent with a model in which a
Poynting Ñux feeds energy upward from the solar surface
into coronal loops.

Many coronal heating models depend on the strength of
the magnetic Ðeld in some way, which in turn decreases with
altitude. We also therefore considered a heating Ñux that is
proportional to the square of the magnetic Ðeld strength,
which in turn we assumed for simplicity to be due to a
potential Ðeld from a line current of depth d, say, below the
coronal base. Such a model arcade is a reasonable represen-
tation of the observed structure and gives a series of loops
that are arcs of circles and have constant cross sections with
the Ðeld strength falling o† inversely with distance from the
axis below the solar surface. Comparing the observations
with the resulting temperature proÐle [eq. (3.13) with L (h)
given by eq. (3.11)] and minimizing with respect to and dH
then gave an excellent Ðt (Fig. 11c) and a j/n of 0.49. For
comparison, we also considered a Ñux proportional to the
magnetic Ðeld (rather than its square), which also gave a
good Ðt (Fig. 11d) with a j/n of 0.51, so we have little ability
to discriminate at present about what power of the mag-
netic Ðeld is important.

The comparison with the arcade observations therefore
gives extra information about the form of the heating
mechanism in addition to what we deduced from the loop
observations. In particular, there seems to be good evidence

in favor of the heating Ñux being the same from one loop to
another rather than the heating being deposited uniformly
throughout the arcade. In addition, the model with the
heating being proportional to the square of the magnetic
Ðeld strength (assumed to have circular Ðeld lines) rather
than being uniform appears to be favored.

5. TEMPERATURE PROFILE IN CORONAL HOLES

We now address the question of the temperature proÐle
low down in a coronal hole in the same spirit as we dealt
with the temperature proÐles in loops. With the Yohkoh
SXT instrument Foley et al. (1997) have produced some
measurements of such proÐles that deserve analysis, even
though they are of a lower quality (because the X-ray Ñux is
smaller) than those obtained for arcades of loops.

Coronal hole measurements give us the proÐle with
height of the plasma temperature. As before, we can
compare the e†ects of various possible distributions of the
volumetric heating rate with these data. Since the quality of
the data is somewhat less than those for closed loops we
shall discuss only simple (one-Ñuid) models for the heating
and for the Ðeld line geometry. The starting point is again
equation (3.1), where we moreover assume for simplicity
that the magnetic Ðeld lines are radial and straight. The
position variable is taken as the distance r from the center of
the Sun. Then equation (3.1) assumes the simpler form

i0
r2

d
dr

r2T 5@2 dT
dr

\ [H(r) (5.1)
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and integrates to

i0 T 5@2 dT
dr

\ F0
R

_
2

r2 [ 1
r2
P
R_

r
r@2H(r@)dr@ , (5.2)

where the integration constant represents the absolute(F0)value of the heat Ñux at the base, at The boundaryr \R
_

.
conditions that apply to the di†erential equation (5.1) di†er
from those that apply in magnetically closed regions, since
heat can now leak to inÐnity. We shall assume that the
temperature at the base is known as well as the tem-(T0)perature at inÐnity. The value that should be selected(T=)
for the latter, however, cannot be precisely deÐned, since the
purely conductive energy equation loses validity when one
moves from the solar corona to the solar wind region
proper. Choosing an appropriate value for this quantity will
then be a rough way of representing the heat conduction
and advection physics that takes place at distances from the
Sun approaching or exceeding the distance of the sonic
critical point, namely, about 5 The heat conductionR

_
.

equation is a good representation of energy transport at
distances less than this and, in particular, at those distances
where the measurements have been made.

Integrating equation (5.2) once more gives the tem-
perature proÐle as

2i0
7

T 7@2 \ 2i0
7

T 07@2]
P
R_

r dr@
r@2

]
C
F0R

_
2 [

P
R_

r@
r@@2H(r@@)dr@@

D
. (5.3)

This solution satisÐes the boundary condition at the base,
and the Ñux integration constant can be chosen such(F0)that the boundary condition at inÐnity be satisÐed too. This
gives

F0R
_

\
P
R_

= dr@
r@2
P
R_

r@
r@@2H(r@@)dr@@[ 2i0

7
(T 07@2 [ T =7@2) ,

(5.4)

and Ðnally the temperature is given as a function of r by

2i0
7

T 7@2 \ 2i0
7

T =7@2] 2i0
7

(T 07@2 [ T =7@2)
R

_
r

]
P
r

= dr@
r@2
P
R_

r@
r@@2H(r@@)dr@@

[ R
_
r
P
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= dr@
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r@@2H(r@@)dr@@ . (5.5)

This general expression is valid for any proÐle of the
heating rate H(r). It is interesting to discuss whether the
resulting temperature proÐle has an extremum or decreases
continuously from the base to inÐnity. From equation (5.2)
above for the heat Ñux, the temperature maximum, if it
exists, will be situated at a radius which is a solution of(r),
the equation

F0R
_
2 \

P
R_

r
r@2H(r@)dr@ . (5.6)

Let us now take into account equation (5.4) between the
base Ñux and the temperature at inÐnity and also(F0) (T=)
deÐne a function which increasesG(r)\ /

R_
r r@2H(r@)dr@,

from 0 at to a value at inÐnity. Then equationr \ R
_

G=(5.6) can be restated as an equation for the value of G at(G)
the temperature maximum, namely,

P
R_

= dr@R
_

G(r@)
r@2 [ 2i0R

_
7

(T 07@2 [ T =7@2)\ G . (5.7)

The integral on the left-hand side is smaller than andG=,
the equation for the position of the temperature(r)
maximum has a solution if the left-hand side is positive,
which implies that be not too large ; otherwise, T (r)T0decreases monotonically from the base to inÐnity.

To be speciÐc, assume that the function r2H(r) is a step
function, so that the heating is limited to some region at the
base of the corona between and In otherR

_
R

_
] L .

words, we assume that for r between andR
_

R
_

] L ,
where is a constant, whereas for largerr2H(r) \ H0 L2, H0values of r it vanishes. Such a heating proÐle gives an inte-

grated heating rate that is constant per unit length along
conical Ñux tubes up to some limiting height L . The corre-
sponding function G(r) is linear between andR

_
R

_
] L

and constant for larger rÏs. After some algebra and using
equation (5.4) to express in terms of we obtain theF0 T=,
temperature proÐle in the following form:

2
7

i0 T 7@2(r) \ 2
7

i0
C
T =7@2 ] (T 07@2[ T =7@2)

R
_
r
D

] H0 L2

]
C
1 ]

A
1 [ R

_
r
B

log
AR

_
] L

R
_

B

[R
_
r

] log
AR

_
r
BD

,

if R
_

¹ r ¹ R
_

] L , (5.8)

and
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Such a function decreases as 1/r for large r, and, if the base
temperature is small enough to allow the temperature
proÐle to reach a maximum, it is reached at a value of r(r)
that is less than namely, at(R

_
] L ),

r \ R
_

A
1 ] F0R

_
H0 L2

B
. (5.9)

This may be written in terms of asT=

r \ (R
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which is indeed smaller than because the last twoR
_

] L
terms on the right-hand side are negative. The value of isr
also larger than if is not too large. The temperatureR

_
T0
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at the maximum is given by(T )

2
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i0 T 7@2 \ 2
7
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1 ] F0R
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The observational data reported in the paper by Foley et
al. (1997) are not very precise. They report a maximum
temperature in coronal holes of 1.5 MK at 1.4 whichR

_
,

was found by Ko et al. (1997) from ion populations record-
ed in the solar wind with Ulysses SWICS. Foley et al. (1997)
found a temperature at the base of 1.1 MK and at 1.15 R

_of 1.35 MK. The base value, however, does not accurately
represent the temperatures close to the coronal base
because temperatures below 1 MK are e†ectively veiled by
the hotter coronal hole material (originating from greater
heights) that lies along the same line of sight. A better value
at the coronal base would be 0.5 MK (Withbroe 1988). For
our purposes, we shall therefore adopt a base temperature

of approximately 0.5 MK and a temperature maximum(T0)of 1.5 MK reached at approximately 1.4È1.5 The dataR
_

.
give no clue about a reasonable value of the temperature at
inÐnity, which we shall assume, by default, to vanish. We do
need, however, to determine the parameters and L .F0, H0Gathering the results obtained above, and introducing the
convenient dimensionless variables

r* \ r
R

_

, F0* \ F0 R
_

H0 L2 , T * \ T
106 K

, T 0* \ T0
106 K

,

the position (eq. [5.9]) of the temperature maximum gives
the equation

r* \ 1 ] F0* , (5.12)

the value of the temperature maximum (eq. [5.11]) gives the
equation

T *7@2 [ T 0*
7@2 \ 7H0 L2

2 ] 1021i0
[F0* [ log (1 ] F0*)] , (5.13)

and the relation between the Ñux and the heating rate (eq.
[5.4]) gives, with T=\ 0,

F0* \ log
A
1 ] L

R
_

B
[ 2 ] 1021i0

7H0 L2 T 0*
7@2 . (5.14)

The observed data suggest, with large uncertainties, that
T * \ 1.5, r* \ 1.5, and The value of isT 0* \ 0.5. i09.24] 10~12 J m~1 s~1 for a Coulomb logarithm of 20. We
adopt r* \ 1.5 as the position of the temperature maximum
so that From the equations (5.13) and (5.14) weF0* \ 0.5.
then Ðnd

log
A
1 ] L

R
_

B
\ F0* ] T 0*

7@2 F0* [ log (1 ] F0*)
T *7@2 [ T 0*7@2 ,

which gives

L
R

_

\ 0.65 .

We Ðnally obtain from equation (5.13) and from it theH0 L2
absolute value of the base Ñux (in MKSA units), namely,

We can deduce then a value for theF0\ F0* H0 L2/R
_

.
heating Ñux, i.e., ergs cm~2 s~1.F0B 1.6] 105

However, the data do have large uncertainties. Changing
the position of the temperature maximum to r* \ 1.4 gives

and ergs cm~2 s~1. Chang-L /R
_

\ 0.40 F0B 1.93] 105
ing the temperature at the base to 1.0 MK still with r* \ 1.5
and T * \ 1.5 gives and ergsL /R

_
\ 0.70 F0\ 1.87] 105

cm~2 s~1. A much lower position of the temperature
maximum, which seems also to be consistent with the
quoted data, at, say, r* \ 1.15 with the maximum tem-
perature of T * \ 1.35, still with givesT 0* \ 0.5 L /R

_
\

0.17 and ergs cm~2 s~1. That the Ñux soF0\ 3.1] 105
obtained is rather small in the case of a high-altitude loca-
tion of the temperature maximum can be understood,
because it represents only that part of the Ñux that is associ-
ated with the conductive losses of the low corona back to
the solar surface, and these are lower for a less steep tem-
perature increase. Moreover, assuming the temperature to
reach an asymptotic value at inÐnity in a purely conductive
model is equivalent to neglecting the enthalpy and kinetic
energy losses of the solar wind. A realistic estimate of the
energy Ñux entering the corona at the base of polar coronal
holes should add these wind losses to the present estimate,
not to speak of the radiative losses of the transition region.
The Ñux we refer to is then the Ñux above the transition
region. A rough estimate of the solar wind mass loss,
deduced from an isothermal Parker model, say, is
4 ] 10~14 yr~1 and the speciÐc energy carried away byM

_the wind is almost entirely kinetic at the orbit of earth with
an observed velocity of about 400 km s~1. This corresponds
to an average energy Ñux at the solar surface of 7 ] 104 ergs
cm~2 s~1. Added to our estimated conductive losses, we
Ðnd the sum to be just a little less than 105 ergs cm~2 s~1,
even when the location of the temperature maximum is
higher, and deÐnitely larger than 105 ergs cm~2 s~1 when it
is lower.

The most robust conclusion of this discussion of the open
corona is that the height up to which the plasma is heated is
larger than the height at which the temperature reaches a
maximum. We have proved this to be true (from eq. [5.10])
whatever the distribution of the heating rate versus height.
A temperature maximum at about 1.5 corresponds to aR

_heating region between the base and an altitude of about 0.5
to 0.7 Our particular choice of heating proÐle placesR

_
.

the upper limit of the heating zone at an altitude of 0.7 R
_for a maximum temperature at 0.5 above the solarR

_surface.

6. GLOBAL BEHAVIOR OF THE SOLAR CORONA

Acton (1996) and Culhane (1997) have described the
global features of the solar corona as determined from
Yohkoh, which was launched on 1991 August 30. Since then
the Soft X-Ray Telescope (SXT) has given a detailed record
of the way the X-ray corona changes during the declining
phase of the solar cycle. It images the Sun with an e†ective
angular resolution of about 5A out to about 1 above theR

_limb and reveals that the emission is extremely inhomoge-
neous : over one-half of the X-ray Ñux comes typically from
less than 2% of the image, namely, from active regions.
Several images are taken every hour, giving a total of 105
over the 4 yr period.

Acton plots a variety of parameters as a function of time
and Ðnds that many of them follow the cycle. For example,
the global X-ray intensity and global photospheric mag-
netic Ñux both decline by a factor of about 50È100.
However, there is an unexpectedly low correlation with the
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mean coronal temperature, which only changes a little from
about 3 to about 2.5 MK. It is clear that the coronal emis-
sion is highly localized in nature and associated mainly with
active regions.

Culhane (1997) focuses on the large-scale di†use emis-
sion. He also stresses that near sunspot maximum the X-ray
radiation is dominated by localized structures (active
regions), whereas near sunspot minimum it is less concen-
trated and comes from large-scale di†use structures. Most
of the di†use emission arises from closed magnetic arcades
underlying helmet streamers, in which the temperature rises
to a maximum of 2.2È2.3 MK at about 1.5 By compari-R

_
.

son the temperature in coronal holes levels o† at about 1.5
MK, also at about 1.5 Further puzzling properties areR

_
.

that the density (as measured by the square root of the
emission measure) declines steadily by a factor of 1.01 and
that it is not hydrostatic.

In order to have an understanding of the global solar
corona that is sufficiently robust to be extrapolated to other
stars (Jordan 1997) we need to answer at least the following
simple questions.

1. Why does the coronal intensity decline by about a
factor of 100 from sunspot maximum to sunspot minimum?

2. Why is the maximum temperature in closed regions
2.2È2.3 MK and why does it occur at about 1.5 R

_
?

3. Why is the maximum temperature in coronal holes 1.5
MK and why does it occur at about 1.5 R

_
?

6.1. Global Coronal Emission
The Ðrst question may be understood as follows. Let us

write the global coronal intensity

I\ I
q
] Iar (6.1)

as the sum of a background quiet di†use term and an(I
q
)

active-region contribution Now, whether the heating is(Iar).produced by a mechanism that is essentially MHD waves,
current sheets, magnetic reconnection or MHD turbulence,
in each case the energy Ñux through the photosphere due to
surface motions moving around magnetic Ðeld lines either
rapidly or slowly is just the Poynting Ñux through the solar
surface. Since the Poynting Ñux due to a velocity acting on¿
a magnetic Ðeld B is of order vB2/k per unit area, these may
in turn be written as

I
q
\ 4nR

_
2 vB

q
2

k
, Iar\ 4nfR

_
2 vBar2

k
, (6.2)

where and are the photospheric Ðelds in the quietB
q

BarSun and in active regions and f is the fraction of the solar
surface covered by active regions. Thus, if we denote values
at sunspot maximum by a subscript ““ max ÏÏ and at sunspot
minimum by a subscript ““ min ÏÏ (when f vanishes), the ratio
of the global coronal intensities at maximum and minimum
may be written

Imax
Imin

\B
q max2

B
q min2 ] fmax B

ar max2
B

q min2 . (6.3)

Now the ratio is roughly 1.5 (Harvey 1984),B
qmax/Bqminwhile is about 0.1 (Acton 1996), and the ratiofmax is typically 30 (if G andB

armax/Bqmin B
armax B 300 B

qminB 10
G), so

Imax
Imin

B 90 , (6.4)

as required, and the contribution at sunspot maximum is
dominated by active regions.

6.2. Maximum Temperatures
Why is the maximum temperature in large closed regions

about 2.3 MK, whereas the maximum in coronal holes is
about 1.5 MK?

The maximum temperature in di†use loops must be
higher than in holes, because in holes part of the dissipated
energy Ñows away as solar wind losses, whereas in loops it
goes away only as conducted Ñux. Let us quantify this dif-
ference as follows by using the observed temperatures to
deduce the ratio of the wind losses to input Poynt-(F

w
/Fop)ing Ñux. From the loop analysis above in ° 2, the relation

between the conductive Ñux at the base and the base tem-
perature is from equation (2.4),

F0\ H0 L \ 2i0 T 07@2 H
7L

, (6.5)

where L is the loop length and the temperature at theT0base of the loop, while is the dimensionless heatingH
parameter deÐned in equation (2.6). Eliminating fromH
equation (6.5) and an expression for the loop summit tem-
perature for uniform heating from equation (2.7), we(T

m
)

obtain the base-Ñux/summit-temperature relation as

F0\ 4i0
7L

(T
m
7@2 [ T 07@2) . (6.6)

In open magnetic regions, the analysis of ° 5 shows that
the base conductive Ñux is given in terms of the parameter

by By using equationF0* \ (r*[ 1) F0\ F0* H0 L2/R
_

.
(5.11) this may be written in terms of the maximum tem-
perature as(T )

F0\ 2
7

i0
AT 7@2[ T 07@2

R
_

B F0*
F0* [ log (1 ] F0*)

. (6.7)

However, is not the same in both cases because of windF0losses. Whereas for the closed loop the base conducting Ñux
is approximately the amount of Poynting Ñux that(Fcl)enters the base of loops, for open regions the downward
conducting Ñux equals the input Poynting Ñux minus(Fop)the energy Ñux carried away by the solar wind So we(F

w
).

can write Fcond\ Fop [ F
w
.

We can now calculate the ratio of conductive Ñuxes at the
base of closed and open regions as

Fcond, cl
Fcond, op

\ 2 R
_

L
T cl7@2[ T 0,cl7@2
T op7@2 [ T 0,op7@2

T 0* [ ln (1] T 0*)
T 0*

. (6.8)

Numerically, observations suggest the values T cl\ 2.3
MK, MK, MK, MK, whileT0,cl \ 0.5 T op\ 1.5 T0,op\ 0.5
the value of the parameter has been found to be aboutT 0*0.5. If we take a loop length equal to 100,000 km, we obtain
in numerical terms

Fcl
Fop[ F

w
\ Fcond,cl

Fcond,op
\ 12 . (6.9)

The analysis of ° 4.1 has also shown that the Ñux entering
loops is of order 5 ] 105 ergs cm~2 s~1, while the total Ñux
entering magnetically open regions is about 105 ergs cm~2
s~1. Therefore, we also have which allows us toFcl/FopB 5,
Ðnd in terms of from equation (6.9) asF

w
Fop

F
w

\ 0.58Fop . (6.10)
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This is consistent with our above solar wind analysis. The
rough estimate of solar wind losses was ergsF

w
B 70,000

cm~2 s~1, which should, according to the present dis-
cussion, be associated with a total Poynting Ñux of Fop \

ergs cm~2 s~1, leaving a conduc-70,000/0.58\ 1.2] 105
tion Ñux from the open corona to the Sun of 120,000 [ 70,
000 \ 5 ] 104 ergs cm~2 s~1, whereas our analysis of the
hole temperature data, with just these Ðgures for base and
maximum temperatures, has given a base conduction Ñux of
1.6] 105 ergs cm~2 s~1. The discrepancy is not consider-
able, given the uncertainties in hole measurements and the
fact that the conductive Ñux also provides heating and radi-
ation in the transition region. Since we already demanded

the result is also consistent with our estimate ofFcl/FopB 5,
the conductive Ñux from loop temperature data.

7. CONCLUSION

We are suggesting a new approach to the coronal heating
problem, namely, to split it into two parts and attempt to
answer the following questions.

1. What form of heating H(s) is producing the observed
temperature proÐle in a loop or more generally in other
coronal structures such as arcades?

2. What heating mechanism can produce the form of
heating inferred in step 1?

Of course, if two forms of heating do not produce a sig-
niÐcantly di†erent temperature proÐle, then step 1 cannot
distinguish between them. In addition, if two heating
mechanisms produce the same heating form, then step 2
cannot itself determine which is most likely. Nevertheless,
we are hopeful that this approach may narrow down the
hunt for heating mechanisms very substantially and certain-
ly rule out many previously viable possibilities.

Di†erent forms of heating (step 1) have a distinctive e†ect
on the proÐles along a loop of both the heat Ñux and the
temperature (T ). When the heating is uniform along the
loop and radiation is negligible, the heat Ñux is a linear
function of distance, while T 7@2 increases quadratically.
When the heating is uniform over a distance from theL

Hloop base, T 7@2 remains constant beyond When theL
H
.

heating is instead uniform over a distance either side ofL
Hthe loop summit, T 7@2 declines linearly below L

H
.

The behavior of T 7@2 with height on the axis of an arcade
provides further information about the nature of the
heating. If the heat is distributed uniformly throughout the
arcade T 7@2 increases quadratically with height, whereas if
the heat is uniform within each loop and the base Ñux is the
same from one loop to another then T 7@2 increases linearly
with height. When the heating is deposited only near the
base, the temperature becomes uniform at large heights,
whereas when it is deposited only near the summits it
becomes linear at large heights.

An independent question (step 2 above) is how the above
heating form varies with several di†erent heating mecha-
nisms as follows.

1. For single-site magnetic reconnection, the heat is
likely to be localized near the reconnection site such as the
top of a loop, although the e†ect of slow shocks means that
it may also be liberated some distance away.

2. For base heating in a loop by, for example, reconnec-
tion of low-lying Ðelds or X-rayÈbright points, the heat
would be localized near the loop footpoints.

3. For nanoÑaring produced by turbulent braiding and
current sheet formation, the heat tends to be distributed
rather uniformly.

4. For long-wavelength waves, phase mixing orAlfve� n
resonant absorption tends to produce a heating that is more
intense near the summit for the fundamental mode since the
wave amplitude is highest there.

We have compared our models with three separate sets of
observations of the large-scale corona from Yohkoh. They
give strong evidence against heating concentrated near the
loop base and also suggest that heating uniformly distrib-
uted along the loop is more likely than heating concen-
trated at the summit. From the observed temperature as a
function of height within an arcade, we deduce that the
heating is much more likely to have the same Ñux on each
loop than to be uniformly distributed throughout the
arcade. Furthermore, an excellent Ðt is found with a heating
that is proportional to the square of the magnetic Ðeld of a
model arcade.

We therefore conclude that the heating is liberated in situ
along the whole loop rather than being a steady response
either to low-lying heating near the feet (case 2 above) or to
reconnection or some other mechanism focused at the loop
summit (case 1). What about the possibility of waveAlfve� n
heating? The wave transit time along a loop ofAlfve� n
length 700 Mm with an speed of 2000 km s~1, sayAlfve� n
(corresponding to a magnetic Ðeld of 10 G and a density of
108 cm~3), is

qA \ L
vA

\ 350 s .

Thus the fundamental frequency is in the region of granula-
tion frequencies (300È600 s) where there is substantial
photospheric power. A loop reacts to such boundary
motions in an AC (wave) mode rather than a DC mode.
Because the frequency of boundary motions matches the
fundamental mode frequency, we deduce that the funda-
mental is likely to be excited in the loop, so this is at Ðrst
sight a promising heating mechanism. However, phase
mixing or resonant absorption is likely to produce a spa-
tially nonuniform heating, with heat dumped preferentially
near the summit (although this has yet to be conÐrmed by
detailed numerical calculations).

Stochastic or turbulent reconnection in many small
current sheets may, by contrast, be driven by much slower
footpoint motions. For example, supergranular velocities
of, say, 0.3 km s~1 over a distance of 30 Mm act on a
timescale of 105 s (about 1 day). A similar timescale arises
from the photospheric/coronal connectivity cutting of Title
(private correspondence), whereby the coronal connections
to the photosphere (the so-called magnetic carpet ) are
changed over a time of 1È2 days. These slow footpoint
motions will tend to make the coronal Ðeld evolve through
a series of equilibria that go turbulent, either because of
braiding-induced current sheets or because of Ðne-scale
MHD instabilities such as the tearing mode. Since the loop
cross-sectional areas are relatively uniform, the braiding
and turbulence is likely to be spread uniformly along a loop
rather than being focused at the summit. Indeed, a recent
three-dimensional resistive MHD numerical experiment of
Galsgaard et al. (1999) produces a rather uniform ohmic
heating. The mechanism that most closely Ðts the obser-
vations at present is therefore turbulent reconnection.
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However, we cannot completely rule out wave heating
since, on the one hand, future simulation may show it to be
capable of producing uniform heating and, on the other
hand, the observational errors of the data we have analyzed
are not small enough to give strong evidence against a
model with a weak (say, sinusoidal) concentration at the
summit.

We have raised several key questions about the nature of
the global corona. The reason for the decline in coronal
intensity by 2 orders of magnitude from sunspot maximum
to sunspot minimum seems to be because of the ratio of the
Poynting Flux in active regions to the quiet Sun. The di†er-
ence in maximum temperature in closed and open regions
may be understood in terms of the di†erence in the roles of
the conductive Ñux there. Why does the maximum tem-
perature in coronal holes occur at about 1.5 The tem-R

_
?

poral frequency of photospheric oscillations peaks at about
s in association with granulation and this shouldqA \ 300

drive waves near such a frequency. The correspond-Alfve� n
ing wavelength is Mm for an speedj \ vA qA B 150 Alfve� n
of 500 km s~1. waves dissipate by laminar phaseAlfve� n
mixing over a very large height of (6 Re)1@3/2n wavelengths,
where Re is the smaller of the viscous and magnetic Rey-
nolds numbers. This gives a height of about 300j for
Re\ 107, say. However, instabilities enhance the dissi-
pation very substantially (Heyvaerts & Priest 1983 ; Brown-
ing & Priest 1984) and enable the waves to dissipate in a few
wavelengths. In particular, dissipation over a couple of
wavelengths would produce a temperature maximum at
about 1.5 R

_
.

As we have seen, the variation with position of the heat
Ñux and T 7@2 are sensitive diagnostics of the form of the
coronal heating. A natural future strategy therefore to

determine more about the coronal heating mechanisms has
several elements. First of all, the spatial forms of the heating
produced by di†erent mechanisms and their dependence on
Ðeld strength and other parameters such as temperature
and density need to be determined more accurately from
theoretical and computational analysis. Second, better
models of the temperature structure within coronal loops
and arcades produced by given heating forms need to be
developed. For example, the three-dimensional temperature
structure in potential and force-free models of observed
regions could be produced and integrated along the line of
sight to compare with the observations. The present rela-
tively simple analysis is a preliminary but necessary step for
that much more substantial analysis. Also, other e†ects in
the energy balance could be included such as radiation and
enthalpy Ñux as well as the e†ects of time dependence and
Ñows. Third, techniques for determining the temperature
structure as accurately as possible from Yohkoh, T RACE,
and SOHO observations are a high priority. Finally, a theo-
retical determination of the other consequences of the dif-
ferent heating mechanisms needs to be undertaken together
with their detailed observation from SOHO, including
Ñows, jetting, and levels of turbulence.
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APPENDIX A

OTHER LOOP MODELS

Here we extend the analysis of ° 2 to the cases when the heating decays exponentially away from the feet or summit.
Suppose Ðrst that the heating in the left-hand leg of the loop is of the form

H \ H0 e~s@LH (A1)

when 0¹ s ¹ L , so that it decays exponentially with distance over a length from the footpoint. Then the heat Ñux becomesL
H

F\ [H0 L
H
(e~s@LH [ e~L@LH) , (A2)

whose absolute value decreases from a base value of over a scale to zero at the loop summit (Fig.F0\H0 L
H
(1 [ e~L@LH) L

H2a, dashed curve). The corresponding temperature (Fig. 3a, dashed curve) is

T (s)\ T0
C
1 ] H

L
H
2

L2
A
1 [ s

L
H

e~L@LH [ e~s@LH
BD2@7

. (A3)

Thus, the main characteristics of this and the previous form of heating is a Ñattening of the temperature proÐle near the
summit.

Suppose next that the heating decays exponentially away from a summit value of say, over a distance Then the baseH0, L
H
.

heating is and the heat Ñux Figure 2b (dashed curve) isH0 e~L@LH

F\ [H0 L
H
(1[ e(s~L)@LH) , (A4)

so its absolute value decreases from at the base to zero at the summit. The resulting temperatureF0\ H0 L
H
(1 [ e~L@LH)

proÐle (Fig. 3b, dashed curve) is

T \ T0
G
1 ] H

L
H
2

L2
C s
L
H

[ e~L@LH(es@LH [ 1)
DH2@7

, (A5)
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with a maximum value at the summit that is always smaller than the uniform heating value. The characteristic of this type of
heating is therefore a Ñattening of the heat Ñux at low heights and of the temperature proÐle at large heights.

APPENDIX B

OTHER SEMICIRCULAR ARCADE MODELS

Here we extend the analysis of ° 4.1 to the cases when the heating decays exponentially away from the feet or summit.
Suppose Ðrst that the heating in each loop decays exponentially from the feet (eq. [A1]) to give the loop temperature shown in
(A4). The resulting arcade proÐle is

T
s
\ T0

G
1 ] 2c

H
h
H
2

R
_
2
C
1 [

A
1 ] h

h
H

B
e~h@hH

DH2@7
(B1)

or

T
s
\ T0

C
1 ] 2c

F
h
H

R
_

1 [ (1] h/h
H
)e~h@hH

1 [ e~h@hH
D2@7

(B2)

for uniform-heat or uniform-Ñux arcades, respectively. Figures 4a and 4b show how the temperature proÐles (dashed curves)
for this and the uniform-Ñux arcade are similar to the previous case but with the jumps in temperature gradient smoothed o†.

Second, suppose the heating in each loop decays exponentially away from the summit over a distance so that the loopL
H
,

proÐles are given by (A5). The arcade proÐle is then

T
s
\ T0

G
1 ] 2c

H
h
H
2

R
_
2
CA h

h
H

[ 1
B

] e~h@hH
DH2@7

(B3)

for a uniform-heat arcade (Fig. 4c, dashed curve) or

T
s
\ T0

C
1 ] 2c

F
h
H

R
_

(h/h
H

[ 1)] e~h@hH
1 [ e~h@hH

D2@7
(B4)

for a uniform-Ñux arcade (Fig. 4d, dashed curve). Again it can be seen how the exponential proÐle produces the same
qualitative behavior as the piecewise constant proÐle but with the sudden changes smoothed away.

APPENDIX C

DIPOLE ARCADES

Following on from ° 3.2, we consider here the potential magnetic Ðeld due to a dipole of moment m submerged a distance d,
say, below the coronal base (Fig. 6b). Positions are measured in a polar coordinate system with the dipole moment at the
origin and the angle h measured from the horizontal direction, so that the polar Ðeld components are given by

B
r
\ k0

4n
2m
r3 cos h , Bh \ k0

4n
m
r3 sin h . (C1)

The distance L (h) along a Ðeld line (whose summit height is h) from footpoint to summit is

L (h)\ 12(d ] h)[C0J1 ] 3C02 ] log (J3C0] J1 ] 3C02 )] , (C2)

where The way in which L increases with h is shown in Figure 6b : at low heights it againC0\ M1 [ [d/(d ] h)]2@3N1@2.
increases like h1@2 and at large heights like h.

In calculating the temperature along such a loop we must take account of the variation in Ñux tube cross section [A(s)].
Because of Ñux conservation along a tube, A(s)B(s) is constant, and equation (2.1) becomes (in terms of the position angle
deÐned in Fig. 6a)

1
sin h

d
dh
A sin6 h
1 ] 3 cos2 h

1
sin h

dT 7@2
dh
B

\ [7(d ] h)2H(h)
2i0

sin6 h . (C3)

In solving it, several di†erent distributions of heating rate may be considered. If H(h) is a constant along a given Ðeld line(H0)(which we refer to as case a), this equation can be integrated to give the summit temperature as a function of the(T
m
)

temperature at the base, situated at an angle ash0,

T
m

\ T0
C
1 ] H0(d ] h)2 cos2 h0

10i0 T 07@2 sin4 h0
(64] 32 sin2 h0 [ 11 sin4 h0[ 15 sin6 h0)

D2@7
. (C4)
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If, on the other hand (case b), H(h) is taken to be proportional to the square of the local magnetic Ðeld, as it would be if it
were to scale as the local magnetic energy density, we Ðnd

T
m

\ T0
C
1 ] 7Htop(d ] h)2

4i0 T 07@2
cos2 h0
sin8 h0

D2@7
. (C5)

This can be transformed into a temperature versus height relation by using the above expression for C0.The corresponding variation with height of the temperature in the midplane of an arcade of dipolar loops depends on how
the volumetric heating rate varies not only along the length of the loops but also from one loop to another. We calculate
below the variation with height of the temperature at the summit of Ðeld lines culminating at height h in the three cases ofT

s
(h)

1. a uniform volumetric heating rate in the arcade ;(H0)2. a uniform distribution of the heat Ñux at the base ; and(F0)3. a distribution of the heat Ñux at the base proportional to the square of the base magnetic Ðeld (this being expected to be
close to the real situation if the energy Ñux is in the form of a Poynting Ñux).

Each of cases 2 or 3 splits further into two subcases according to whether the heating rate is constant along each Ðeld line
(case a) or proportional to the square of the local magnetic Ðeld (case b). Situation 1 corresponds to a uniform heating rate
and simply gives rise to the following ““ arcade proÐle ÏÏ :

T
s
7@2(h)\ T 07@2] T 07@2 c

H0
4(d ] h)2
70n2R

_
2

(d ] h)4@3[ d2@3(d ] h)2@3
d4@3 [64] 32

A d
d ] h

B2@3 [ 11
A d
d ] h

B4@3 [ 15
A d
d ] h

B2
] , (C6)

where c
H0

\ (7n2H0R
_
2 )/(16i0 T 07@2).When Ðeld lines are heated uniformly along their length and the heat Ñux at the base is also uniform (which corresponds to

case a2), the arcade temperature at height h, which we deÐne as the summit temperature of the loop that culminates at this
height, is given by

T
s
7@2(h)\ T 07@2] c

F
T 07@2

2(d ] h)
70nR

_

[d/(d ] h)]2@3J1 [ [d/(d ] h)]2@3
J4 [ 3[d/(d ] h)]2@3

]
64 ] 32[d/(d ] h)]2@3 [ 11[d/(d ] h)]4@3 [ 15[d/(d ] h)]2

[d/(d ] h)]2@3 ] (3/5)M1 [ [d/(d ] h)]2@3N2[ (1/7)M1 [ [d/(d ] h)]2@3N3 . (C7)

When Ðeld lines are heated uniformly along their length and the heat Ñux at the base is proportional to the square of the
base magnetic Ðeld (which corresponds to case a3), we obtain the arcade temperature at height h as

T
s
7@2(h)\ T 07@2] c

F0
T 07@2

2(d ] h)
70nR

_

A d
d ] h

B8@3S
1 [

A d
d ] h

B2@3 S
4 [ 3

A d
d ] h

B2@3

]
64 ] 32[d/(d ] h)]2@3 [ 11[d/(d ] h)]4@3 [ 15[d/(d ] h)]2

[d/(d ] h)]2@3 ] (3/5)M1 [ [d/(d ] h)]2@3N2[ (1/7)M1 [ [d/(d ] h)]2@3N3 , (C8)

where c
F0

\ (7F0 nR
_

)/(8i0 T 07@2).When the volumetric heating rate is, along a given loop, proportional to the square of the local magnetic Ðeld, the Ñux at
the base and the summit temperature are given by equation (C4). With a uniform base Ñux (which corresponds to case(T

m
) F0b2), the arcade temperature at height h is given by

T
s
7@2 \ T 07@2

G
1 ] c

F0
2(d ] h)

nR
_

A d
d ] h

B2@3 J1 [ [d/(d ] h)]2@3
J4 [ 3[d/(d ] h)]2@3

H
. (C9)

If, on the other hand, it is assumed that the base Ñux is proportional to the square of the base Ðeld while still assuming the
heating rate in each loop scales as the square of the local Ðeld (which corresponds to case b3), the arcade temperature at height
h is

T
s
7@2 \ T 07@2

C
1 ] c

F0
2(d ] h)

nR
_

S
1 [

A d
d ] h

B2@3 S
4 [ 3

A d
d ] h

B2@3A d
d ] h

B8@3D
. (C10)

where c
F0

\ (7F0 nR
_

)/(8i0 T 07@2).This completes our calculations of the arcade temperature proÐle with height in cases 2 and 3 for loop heating situations a
and b described above.
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