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ABSTRACT

A new application of wavelet analysis is presented that utilizes the inherent phase information residing within
the complex Morlet transform. The technique is applied to a weak solar magnetic network region, and the temporal
variation of phase difference between TRACE 1700 8 and SOHO/SUMER C ii 1037 8 intensities is shown. We
present, for the first time in an astrophysical setting, the application of wavelet phase coherence, including a
comparison between two methods of testing real wavelet phase coherence against that of noise. The example
highlights the advantage of wavelet analysis over more classical techniques, such as Fourier analysis, and the
effectiveness of the former to identify wave packets of similar frequencies but with differing phase relations is
emphasized. Using cotemporal, ground-based Advanced Stokes Polarimeter measurements, changes in the ob-
served phase differences are shown to result from alterations in the magnetic topology.

Subject headinggs: methods: data analysis — Sun: chromosphere — Sun: magnetic fields — Sun: oscillations
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1. INTRODUCTION

The nature of oscillations in quiet-Sun regions of the solar
atmosphere has been studied extensively using Fourier tech-
niques for a number of decades (early work is reviewed in
Gibson 1973). Fourier power spectra clearly show that regions
of ‘‘nonmagnetic’’ internetwork (supergranular cell interiors)
are dominated by higher frequencies, � > 4 mHz, while the
‘‘magnetic’’ network (supergranular cell boundaries) is dom-
inated by lower frequencies, � < 4 mHz (Lites et al. 1993).
Through such Fourier work, Lites et al. (1993) found that both
network and internetwork displayed well-correlated, coherent
oscillations between the photosphere and low chromosphere
(temperature minimum) for frequencies around those of the
solar p-mode. In support of this, Judge et al. (2001) propose
that the dynamics of the internetwork atmosphere are driven
by high-frequency tails of the p-mode distribution. Mean-
while, Lites et al. (1993) also found that the internetwork re-
mained coherent in the p-mode range between the low and
mid-chromosphere, while the network displayed a lack of such
coherence. As such, it appears that the presence of a more
substantial magnetic field in the network acts to alter the os-
cillations seen in the chromosphere from those in the photo-
sphere below.

It has been known for over 30 yr that solar p-mode oscil-
lations are observed in 20–30 minute coherent ‘‘packets’’
(Gibson 1973). Studies of the power contained in a time series,
consisting of a train of such packets, will result in essentially
the same result whether looked at with either Fourier analysis
(no timing information) or wavelet analysis (time-localized).
This is because power is always a positive quantity; hence,

averaging over time (analogous to the Fourier case) will only
marginally lower the confidence level achieved. However, if
the phase relations of the driving packets differ or a change
occurs in the local topology (more likely for the network, e.g.,
through field line rearrangement due to reconnection events or
emerging/submerging flux), Fourier analysis will more drasti-
cally ‘‘wash out’’ these relations over the duration of the ob-
servation. This is because phase is not necessarily positive but
can take on negative values as well. Other forms of Fourier
analysis (i.e., running windowed) can be utilized to gain tem-
poral information akin to that achieved by wavelet analysis.
However, choosing which size of temporal window to employ
enters a degree of subjectivity to the analysis along with a num-
ber of problems, including decreased frequency resolution and
a differing number of oscillations within the window for dif-
ferent frequencies.

In this paper we apply a wavelet phase coherence analysis
to a quiet-Sun magnetic element. The layout of the paper is as
follows. In x 2 we outline the observations used in this work,
while the wavelet techniques employed are shown in x 3, with
their application displayed and discussed in x 4. Finally, we
present our conclusions in x 5.

2. DATA

The data analyzed here were obtained as part of Joint Ob-
serving Proposal 72 (JOP072) between the SOHO and TRACE
satellites. In addition to the space-based data (SOHO/MDI,
SOHO/SUMER, and TRACE ), ground-based support was pro-
vided on 1998 May 16 from the Dunn Solar Telescope at
Sacramento Peak, NewMexico. The latter included vector mag-
netograms taken with the High Altitude Observatory’s Ad-
vanced Stokes Polarimeter (ASP) and rastered Ca ii H line core
and wing spectra. The spatial coverage of the ground-based ob-
servations is outlined in Figure 1 with respect to that obtained
by the SOHO and TRACE satellites, while the ASP field of view
(FOV), cospatial TRACE sub-FOV, and SUMER slit positioning
are shown in greater detail in Figure 2.

The ASP records full Stokes spectra (I, Q, U, V ) of the
Zeeman-sensitive, photospheric Fe i 6301.5 and 6302.5 8 line
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pair. Inversion of these spectra by nonlinear, least-squares fit-
ting of synthesized Milne-Eddington model atmosphere pro-
files (Skumanich & Lites 1987) leads to the determination of
the line-of-sight magnetic field, its directional vector compo-
nents, and a number of atmospheric parameters, from which
the apparent magnetic flux density at the photosphere can be
calculated.

The JOP072 satellite data have been previously published in
Judge et al. (2001), and the reader is directed to this paper for a
detailed description of the observations and data alignment.
Judge et al. (2001) mention that some possible network ele-
ments were only visible in the 1998 May 16 data set as per-
sistently brighter streaks in the TRACE 1700 8 observations
(starting at x ¼ 182, 191 in their Figs. 3 and 4), as they were
probably below the SOHO/MDI sensitivity level. In the present
work we use the more sensitive ASP instrument to identify and
isolate one of these elements.

For the purposes of this paper we use the (UV continuum–
dominated) TRACE 1700 8 and SUMER C ii 1037 8 emission
line intensities. These are formed in the solar atmosphere close
to the temperature minimum (1700 8) and farther up in the
lower transition region (C ii). Although the ground-based data
were recorded with slightly varying time separation, the ASP
data were interpolated to a constant cadence (�61 s) and the
higher cadence TRACE and SUMER data (15 and 10–15 s, re-
spectively) were also interpolated to this common, constant time
base for comparative purposes. The pointing of the SUMER slit
at each ASP time stamp was then determined (Fig. 2), and the
SUMER slit region of the ASP and TRACE data extracted.
Spacetime plots were constructed by stacking the regions ex-
tracted from successive images and are shown in Figure 3. It

can be clearly seen in Figures 2 and 3 that regions of increased
1700 8 intensity closely follow regions of heightened photo-
spheric magnetic flux. However, Figure 3 shows that the spatial
correlation between increased intensity and magnetic flux has
disappeared by the height of C ii emission.
The magnetic element studied (shown in more detail in

Fig. 4) can be seen starting near x ¼ 182, before drifting along
the slit with time. Light curves of the 1700 8 and C ii inten-
sities above this network element are displayed in Figure 5.
These were obtained by averaging over a 400 region along the
slit, as marked out in Figures 3 and 4 by dashed lines. This
region was centered on the weak flux element, thus tracking the
element as it moved along the slit.
It is worth noting that around image 52 (time � 53 minutes) a

small, weak, magnetic flux emergence occurs close to the mag-
netic element studied. Before the end of the time series (image �
90, time � 92 minutes), this emergent flux moves away from
the magnetic element under consideration and subsequently co-
alesces with another magnetic element.

3. WAVELET ANALYSIS

The main benefit of wavelet5 over Fourier analysis is that
both time and frequency localization can be achieved in the for-
mer. This is because wavelet analysis employs a wave packet,
whereas Fourier analysis uses an infinite wave train of sines and
cosines. In recent years wavelet power transforms have become
increasingly popular (e.g., De Moortel et al. 2000; Williams
et al. 2001; Bloomfield et al. 2004), while the additionally avail-
able phase information has remained untapped—an exception
being a recent paper by De Pontieu et al. (2003), which reports
wavelet phase difference values but includes no work on phase
coherence.
Here we use the standard Morlet wavelet: a Gaussian mod-

ulated sine wave of the form (Torrence & Compo 1998)

 (�) ¼ ��1=4 exp (i!0�) exp � � 2

2

� �
; ð1Þ

where ��1=4 is a normalization term, � ¼ n=s is the dimen-
sionless time parameter, n is the time parameter, s is the scale
of the wavelet, !0 ¼ s! is the dimensionless frequency pa-
rameter (taken as !0 ¼ 6 for this work), and ! is the frequency
parameter. It should be noted that in wavelet analysis the
wavelet scale is directly related to the oscillation period (P ¼
1:03s for the Morlet wavelet) and hence oscillation frequency.
We note that an infinite number of mother wavelets are avail-
able, including the derivative-of-a-Gaussian (DOG) and Paul
wavelets. We choose the complex Morlet wavelet as it yields
a complex wavelet transform, containing information on both
amplitude and phase. Since DOG wavelets are entirely real,
they may not be used for phase analysis, as their real trans-
forms hold only information on amplitude. Alternatively, the
complex Paul wavelet could be employed. However, as the
Paul function is more sharply defined in time (in comparison
to the more sinusoidal Morlet function), it is better suited for
studying pulse-like variations.
The equations describing the wavelet transform and its

Fourier equivalent are depicted in Table 1. Typical wavelet
power transforms are shown in Figures 6a and 6b for the 1700
and C ii 1037 8 intensity time series, respectively. In these and

Fig. 1.—SOHO/MDI longitudinal magnetic field context image, taken
shortly before the ground-based observations commenced. The extent of both
the ASP and TRACE FOV coverages ( bounded by small and large boxes, re-
spectively) and the SUMER slit positioning are shown.

5 Wavelet software was provided by C. Torrence and G. P. Compo and is
available at http://paos.colorado.edu /research /wavelets.
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the following power plots, lighter shading indicates regions of
increased power, while the crosshatched areas correspond to the
cone of influence (COI), where edge effects may become im-
portant because of the finite duration of the time series. Also
marked on these plots are contours of the 95% confidence levels,
as determined from a 2 degree of freedom �2 distribution.

3.1. Cross-Wavvelet Transform

The cross–wavelet transform between two time series is
simply the multiplication of the first complex wavelet trans-
form with the complex conjugate of the second, again shown in
Table 1. From this complex cross–wavelet transform, the power
jWXY

n (s)j and individual real,R, and imaginary, I , components
are involved in determining both the wavelet phase coherence
and the wavelet phase difference.

While a wavelet power spectrum depicts the variance of a
time series, with times of large variance showing large power,
the cross–wavelet power of two time series depicts the covari-
ance between these time series. Additionally, cross–wavelet

power has a known distribution of confidence levels, which
is proportional to the square root of the product of two �2

distributions (Torrence & Compo 1998). This allows cross–
wavelet power to be used as a quantified indication of the sim-
ilarity of power between two time series. The cross–wavelet
power transform associated with the two individual power trans-
forms depicted in Figures 6a and 6b is displayed as Figure 6c.

3.2. Phase Coherence

The measuring of phase coherence is carried out to attribute
a value of support to measurements of phase difference between
two time series, with large values of phase coherence signi-
fying that the phase difference varies smoothly as a function
of frequency (i.e., nonrandom). As such, Torrence & Webster
(1999) describe wavelet coherency as ‘‘an accurate represen-
tation of the (normalized) covariance between the two time
series.’’

The complex cross–wavelet transform is used to determine
the wavelet phase coherence in the manner depicted in Table 1,

Fig. 2.—Examples of both the ASP and TRACE FOV from the start of the time series, with the SUMER slit superposed as a solid vertical line. Both images have
been clipped to show fine details. [See the electronic edition of the Journal for a color version of this figure.]
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where h� � �i indicates smoothing in both time and scale. A
Gaussian profile—identical to the Gaussian component of the
Morlet wavelet but normalized to a weight of unity—was used
for the smoothing in time,

1

s
ffiffiffiffiffiffi
2�

p exp � � 2

2

� �
; ð2Þ

while smoothing in scale was carried out with a boxcar filter
of width �j0 (=0.6 for the Morlet case, taking in scale values
over the range 0:7s� s�1:3s). These forms of smoothing are
adopted as they effectively recreate the natural profiles of the
Morlet wavelet function in both time and scale space. The
smoothed R and I components of the cross–wavelet transform

Fig. 3.—Top: SUMER C ii 1037 8 intensity (in arbitrary units). Middle:
TRACE 1700 8 intensity (in arbitrary units) below the projected SUMER slit.
Bottom: Photospheric apparent magnetic flux density obtained with the ASP
(in units of Mx cm�2 ) below the projected SUMER slit. Plots are shown as a
function of position along SUMER slit (abscissa) and image number (ordi-
nate). Successive image numbers are separated in time by the ASP cadence
(61 s). In all plots, ranges of intensity or flux have been clipped to help show
fine detail, and the dashed lines mark the weak network element under con-
sideration. [See the electronic edition of the Journal for a color version of this
figure.]

Fig. 4.—Expanded version of the bottom panel in Fig. 3, showing weak
network elements in greater detail.

Fig. 5.—Projected SUMER slit time series of the TRACE 1700 8 and
SUMER C ii 1037 8 intensities. The C ii values have been shifted upward by
500. [See the electronic edition of the Journal for a color version of this
figure.]
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are used to construct the power of the smoothed cross–wavelet
in the numerator. However, in the denominator the smoothing
in both time and scale are applied after the powers of the first
and second time series have been calculated. The s�1 factors
in this equation are required to convert to an energy density
(Torrence & Webster 1999).

It can be seen from Table 1 that wavelet phase coherence is
analogous to that used in Fourier analysis. In the Fourier case
it is easy to determine a coherence ‘‘floor’’ level—the level
of coherency below which results are unreliable. This lies at
C 2

thr ¼ 1=N when smoothing over N Fourier frequency points.
However, attributing such a level is more complicated for
wavelet analysis. This arises from smoothing being carried out
over both time and scale (i.e., frequency) in the wavelet case,
compared to over only frequency in the Fourier instance. The
added complexity comes from the variability of the number
of points in time over which smoothing is carried out, since
the width of the Gaussian profile used in the time smoothing
(eq. [2]) has a dependence on � and hence the wavelet scale.
An additional problem exists since the filter profile used in
time (Gaussian) is smoothly varying and has no explicit num-
ber of data points that define the extent of the smoothing,
compared to the sharply defined filter used in scale (boxcar).

In the following sections we present and compare two ap-
proaches for testing data coherency against the coherence level
of noise, initially proposed by Gurley et al. (2003). However,

it should be noted that our phase coherence work differs from
that of Gurley et al. (2003) in two manners:

1. we apply smoothing in both time and scale, as outlined
by Torrence & Webster (1999), rather than just in time;

2. we utilize only the middle time step of the randomized
coherence rather than the full transform, as will become ap-
parent in the following section.

3.2.1. ‘‘Mean Floor’’ Coherency Approach

In order to understand the expected response of the wavelet
coherence to noise (i.e., the floor level), we initially randomized
one of the two time series for a large number of realizations. It
was noted that a minor difference existed between the mean
coherence achieved through randomizing one time series or the
other. Because of this, we randomized both time series and
calculated the coherence over 10,000 separate realizations. For
each of the randomizations performed, we took a slice through
the coherence transform at the middle time step. The choice
of the middle time step comes from the nature of the wavelet
transform, such that this time index coincides with the lowest
point of the COI and is thus least affected by edge effects. Also,
in Torrence & Compo (1998) wavelet power at the middle time
step, averaged over many randomizations of a pure noise time
series, was used to successfully show the 2 degree of freedom
�2 distribution of wavelet power response to noise.

TABLE 1

Comparison of Equations Used in Wavelet and Fourier Analysis

Quantity Wavelet Forma Fourier Formb

Transform.................................... Wn(s) ¼
PN�1

n 0¼0 xn 0 
�
h
(n 0�n)�t

s

i
Fj ¼

PN�1
k¼0 fk exp

�
� 2�ijk

N

�
Cross-transform........................... WXY

n (s) ¼ WX
n (s)W

Y�
n (s) FXY

j ¼ FX
j F

Y�
j

Phase coherence.......................... R2
n(s) ¼

jhs�1WXY
n (s)ij2

hs�1 jWX
n (s)j2ihs�1 jWY

n (s)j2i
C 2

j ¼
jhFXY

j ij2

hjFX
j j2ihjFY

j j2i

Phase difference .......................... �n(s) ¼ arctan

�
Ifhs�1WXY

n (s)ig
Rfhs�1WXY

n (s)ig

�
�j ¼ arctan

�
IfFXY

j g
RfF XY

j g

�

a The value n is the time; s is the scale of the wavelet (P ¼ 1:03s for the Morlet); � ¼ n=s is the
dimensionless time parameter; !0 ¼ s! is the dimensionless frequency parameter; and * signifies the
complex conjugate (Torrence & Compo 1998; Torrence & Webster 1999).

b For a continuous signal sampled at N discrete points (k ¼ 0; 1; : : : ; N � 1), f (t) ! f (tk ) � fk for
tk � k�t. Hence, Fj corresponds to the Fourier transform at frequency �j ¼ j=N�t , where j ¼ �N=2;
�(N=2)þ 1; : : : ; N=2.

Fig. 6.—Wavelet power transforms for intensity time series of (a) TRACE 1700 8 and (b) SUMER C ii 1037 8, obtained from the magnetic element starting near
x ¼ 182 in Fig. 3. Plots are shown as a function of time (abscissa) and oscillation frequency (ordinate). Regions of lighter shading correspond to increased
oscillatory power. The crosshatched area marks the COI where edge effects can be important, while the contours show the 95% confidence level. (c) Cross–wavelet
power transform of (a) and (b), also contoured at the 95% confidence level. [See the electronic edition of the Journal for a color version of this figure.]
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The coherence floor level used in data testing can then be
taken as the average over all realizations plus some multiple z
of the standard deviation of these coherence values:,

R2
thr(s) ¼ R2

mean(s)þ ½zR2
stdv(s)�: ð3Þ

In comparison to the general equation for wavelet coherence in
Table 1, this shows no n dependence because we take a slice
through the coherence transform at a single time step for each
realization of the randomization process. This approach yields
a value of coherence that varies with scale, with which the

Fig. 7.—(a) Wavelet phase coherence transform as a function of time (abscissa) and oscillation frequency (ordinate), contoured at 2 � above the mean
randomized coherence. Areas of lighter shading have higher coherence. (b) Histogram of wavelet randomized coherence values over all 1000 realizations of
randomization, for the scale value corresponding to 2.6 mHz. The dashed vertical line denotes the mean, the dashed-dotted line lies 2 � above this, and the dotted
line marks the level above which 15% of the randomized coherence values lie. (c) As in (a), but contoured at the level above which 15% of the randomized
coherence values lie.

Fig. 8.—(a) Full time series wavelet phase difference transform as a function of time (abscissa) and oscillation frequency (ordinate). Contours overplotted are the
15% coherence exceedence levels, while the crosshatched areas are the COI. (b) Time-averaged phase differences (ordinate) of (a) as a function of oscillation
frequency (abscissa). Midpoints correspond to the mean temporal phase difference, while the error bars mark out 	1 �. (c) As in (a), but for full time series wavelet
phase coherence transform. (d ) Time-averaged phase coherence (ordinate) of (c) as a function of oscillation frequency (abscissa), where the dotted line marks the
15% coherence exceedence level and the dashed line marks the mean coherence.
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actual data coherence can be contoured at all points in time. An
example of this form of thresholding is shown in Figure 7a,
where z ¼ 2 is used in equation (3) (i.e., threshold lying 2 �
above the mean). The subsequent mean and threshold levels
used in contouring Figure 7a, at the scale value corresponding
to 2.6 mHz, are displayed in Figure 7b as dashed and dashed-
dotted lines, respectively.

3.2.2. ‘‘Floor Exceedence’’ Coherency Approach

Alternative thresholding on the distribution of values can be
obtained through the construction of a histogram of coherence
values obtained in the randomized middle time step approach.
Through the inspection of such a histogram, the coherence level
above which x% of the randomized samples lie can be easily
calculated. Henceforth, this level will be referred to as the x%
exceedence level. Real data coherence values lying above this
level will have, at most, an x% likelihood of being due to noise. If
the histogram is constructed from all randomized coherence
values obtained over all scales, this gives a constant value of
coherence floor with which to contour the actual data coherence
at all points in time and scale. Alternatively, this can be expanded
to more closely resemble the previous approach, whereby indi-
vidual histograms are constructed at each scale value rather than
one histogram over all scales. Again, from each individual scale
histogram, the coherence level above which x% of the samples
lie is taken and applied at that scale through contouring of the
actual data coherence. Figure 7c displays this method, applied to
the same coherence transform as Figure 7a. In the histogram of
randomized coherence values shown in Figure 7b, the 15% ex-
ceedence level is marked as a dotted vertical line.

Using the ‘‘mean floor’’ approach shown in x 3.2.1, the
threshold level may lie at a coherence value higher than unity
for scales showing high mean randomized coherence or for
large multiples of �. Such an outcome is impossible with the
‘‘floor exceedence’’ approach since, by definition, x% of the
randomized values will lie above the floor level. Also, the dis-
tributions of randomized coherence values at each scale can
show significant differences, especially at low frequencies where
higher randomized coherence values are prevalent. These facts
prompt us to rely more heavily on the scale-dependent floor ex-
ceedence approach throughout the remainder of the paper.

3.3. Phase Difference Analysis

Measurements of phase difference between two time series
yields information on the phase delay between oscillations in
the time series as a function of frequency. Through application
to data such as that presented here, phase differences show
delays experienced in the transfer of oscillatory behavior up-
ward through the solar atmosphere, since the time series have
different heights of formation. The wavelet phase difference is
calculated in the manner shown in Table 1, where the real and
imaginary components of the complex cross–wavelet trans-
form are again used. The range of possible phase difference
values is �180


� � �180


, leading to the existence of a 360




discontinuity where phase difference values marginally above
180
 are treated as marginally above �180
.

Figure 8a displays the wavelet phase difference trans-
form between the TRACE 1700 8 and SUMER C ii intensities.
In this plot absolute white corresponds to 180
 and abso-
lute black to �180
, while the contours overlaid are the same

Fig. 9.—(a) Full time series Fourier power spectra for the TRACE 1700 8 intensity (top), SUMER C ii intensity (middle), and their resulting cross spectrum
(bottom). (b) Fourier phase difference (ordinate) shown as a function of frequency (abscissa). (c) Fourier squared coherence (ordinate) shown as a function of
frequency (abscissa), where the horizontal dotted line denotes the ‘‘random’’ coherence level.
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Fig. 10.—Same as Fig. 8, but for the first wave packet (0–42 minutes).

Fig. 11.—Same as Fig. 8, but for the second wave packet (53–81 minutes).



15% exceedence levels of wavelet coherence shown in Fig-
ures 7c and 8c.

4. DISCUSSION

Inspection of Figures 6a and 6b shows significant power
in both the TRACE 1700 8 and SUMER C ii intensities lying
in the 1–3 mHz range, agreeing with earlier observations that
network regions predominantly display power below 4 mHz
(Lites et al. 1993; McAteer et al. 2002, 2003; Bloomfield et al.
2004). Also, significant power occurs as two distinct wave pack-
ets in both plots. Furthermore, the two wave packets are easily
distinguished in the cross–wavelet transform of Figure 6c, lying
mostly outside of the COI. Interestingly, comparison between
Figures 6c, 8a, and 8c reveals that the two wave packets occur
entirely within separate coherent regions of fairly constant phase
difference, on either side of a phase discontinuity. Two further
points to note are that

1. the abrupt phase jump separating wave packets occurs
over most frequencies at time � 52 minutes—similar to the
time of emergence of weak neighboring flux mentioned in x 2;

2. another phase jump, back to approximately the same phase
values as before, occurs over the frequency range 1.5–5.0 mHz
at time � 83 87 minutes—slightly before the emergent flux
begins moving away from the element under consideration to
coalesce with another.

4.1. Fourier Comparison of Phase Relations

To compare the information obtained by our wavelet ap-
proach to that which Fourier analysis would have yielded, the
time-averaged phase differences and coherences were deter-
mined. Figure 8a shows the wavelet phase difference transform
for the entire time series. In this and the following wavelet
phase difference plots, the contours mark the 15% coherence
floor exceedence as determined in x 3.2.2, correctly displayed
in the actual coherence transform of Figure 8c. The associated
time-averaged values are shown in Figures 8b and 8d and
should be directly comparable to Figures 9b and 9c. Central
dashes on the time-averaged phase difference plots represent
the mean temporal phase difference, while the error bars extend
to	1 �. The dotted lines in the time-averaged phase coherence
plots show the 15% floor exceedence level, while the dashed
lines show the mean coherence.

Figure 9b shows that Fourier analysis carried out on the entire
time series has randomly scattered phase points—comparable
to Figure 8b, which shows large error bars, with a mean close
to 0



. Furthermore, few of the Fourier coherence values in

Figure 9c lie substantially above the random coherence level
of 0.125 (since smoothed over 8 frequency points), nor do
they show any grouping together, leading to the interpretation
of a lack of coherence. Again, Figure 8d is in good agreement
with this result, showing nearly all time-averaged coherence
values lying below the 15% exceedence level.

Closer inspection of the first wave packet (0–42 minutes;
Fig. 10) shows a decreasing positive phase difference (�150
 !
90
) when moving through the frequency range 0.5–3 mHz in
Figure 10b, while Figure 10d tells us that the time-averaged
coherence over 0.5–1.5 and 2.0–2.8 mHz lies marginally above
the 15% exceedence level.

Similarly, for the second wave packet (53–81 minutes;
Fig. 11), there appears to be a fairly constant negative phase
difference (��110
 ! �90
) over the range 1.5–4 mHz in
Figure 11b. However, this wave packet shows a slightly more
significant phase coherence than the previous one, rising higher

above the 15% exceedence level over the range 1.5–2.5 mHz in
Figure 11d. Because of the 360



ambiguity, this negative phase

difference may be alternatively interpreted as �250
–270
.

5. CONCLUSIONS

Wavelet analysis is an improved tool over that of classical
Fourier analysis for studying temporal relations. This paper
has extended the already versatile wavelet analysis tool into
the area of phase coherence studies.

In the example presented here, both wave packets observed
on either side of a phase discontinuity show slightly varying ,
nonzero phase differences over a range of frequencies (�1–
4 mHz). The change from �90



–150



to ��90



–�110



(al-

ternatively �250
–270
) may indicate either an increase or
decrease in phase delay between the respective atmospheric
heights, since the direction of the change in phase difference is
not discernible. This occurs when a weak flux element emerges
close to the element under consideration and reverts to roughly
the previous values as it passes away.

By way of investigation, the local magnetic field inclination
angle as measured by the ASP is shown in Figure 12. In this
diagram, local field inclinations of 0
 (i.e., vertical to the solar

Fig. 12.—Spacetime plot showing ASP local photospheric magnetic field
inclination angle (same spatial and temporal coverage as in Fig. 4). Pixels not
inverted by the ASP software and those with inclination angles larger than 30


have been clipped to show fine detail in the values near 0
. Dashed lines again
mark the spatial region over which intensity time series were extracted. [See
the electronic edition of the Journal for a color version of this figure.]
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surface) are shown as pure white, pixels not inverted by the
ASP reduction software have been set to pure black, and val-
ues greater than 30
 have been clipped to increase the contrast
of those values around 0
. From this it appears that the mag-
netic topology has indeed changed, such that the field lines
associated with the magnetic element have become less in-
clined (i.e., more vertical) by the presence of this neighboring,
same-polarity element. This leads us to the conclusion that the
change in phase difference between the first and second wave
packets is due to a decrease in phase delay, since the path length
experienced by waves propagating between two separate heights
of formation will be shorter for more vertical inclinations (as-
suming a roughly plane-parallel atmospheric geometry).

Future work will consist of better determining the method
required for attributing a floor level to the wavelet coherence
transform, allowing a better comparison with previous Fourier
phase coherence studies. Application of this technique to other

atmospheric parameters, such as Doppler velocities, will be
extremely beneficial.
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