Physics 261

Homework #13

Remember to show your work.

- 1. Do the odd-numbered problems in Ch. 8 of Faissler.
 - (a) 8-1
 - (b) 8-3
 - (c) 8-5
- 2. Calculate the maximum energy that can be stored, in each of the following capacitors:¹
 - (a) 1.4 F, 5.5 V maximum, weighing 12 g.
 - (b) $102,000 \,\mu\text{F}, 130 \,\text{V}$ maximum, weighing $2.02 \,\text{kg}$.
- 3. Suppose an AC voltage source is connected in series with a capacitor.
 - (a) Find the phase difference between the voltage and the current.
 - (b) Plot v(t) and i(t) on the same axes, as I did for the inductor in class.
- 4. Use KVL and complex impedance to derive the rules for combining:
 - (a) Two capacitors in series.
 - (b) Two inductors in series.
 - (c) Two capacitors in parallel.
 - (d) Two inductors in parallel.
- 5. Each of the following statements is true. Justify (briefly) using complex impedance.
 - (a) In the limit $\omega \to 0$ (the DC limit), the capacitor behaves like an open circuit and the inductor behaves like a short.
 - (b) In the limit $\omega \to \infty$, the capacitor behaves like a short circuit and the inductor behaves like an open.

 $^{^{1}}$ Just for fun, I worked out how fast you'd have to throw each capacitor to give it a kinetic energy equivalent to the maximum it can store. I find about $59 \,\mathrm{m/s}$ for (a) and $29 \,\mathrm{m/s}$ for (b).