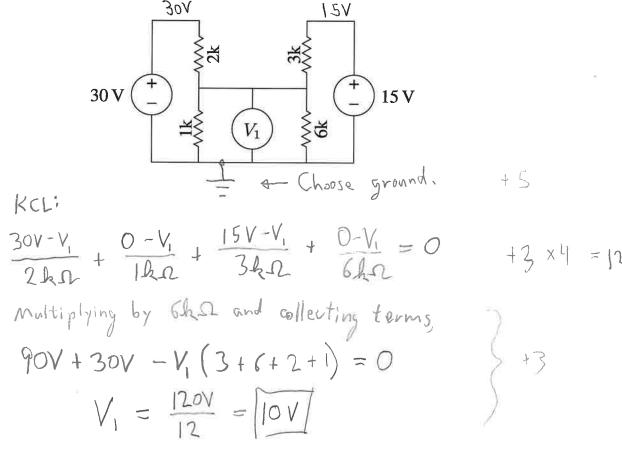

Physics 261 Exam 1

70 points possible.

Remember to show your work.

Name: Solution

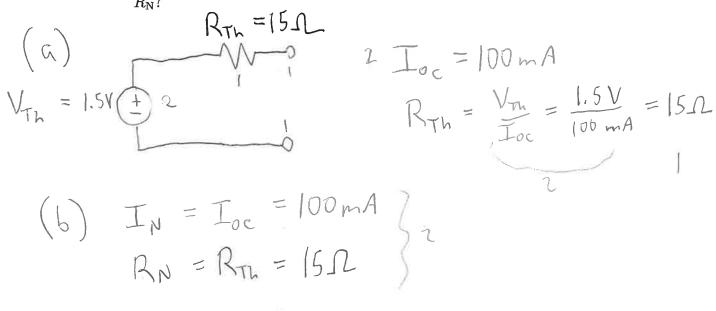
1. Six resistors are attached to a power supply, as shown.



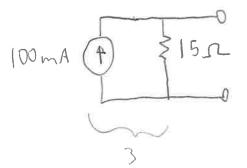
- (a) (5 points) Find the equivalent resistance.
- (b) (5 points) How much power is dissipated in this circuit?
- (c) (5 points) Use Kirchoff's Voltage Law to show that the two 200 Ω resistors must have equal current.

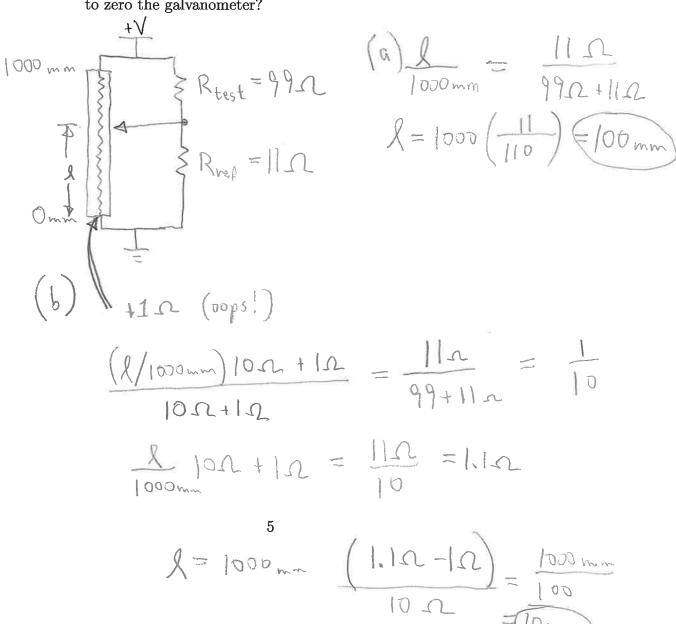
(a)
$$100 + 100 + 200 = 400 \Omega$$

(b) $P = IV$; $I = \frac{12V}{400 \Omega} = 0.03 A = 30 \text{ mA}$
 $P = 30 \text{ mA} \times 12V = 360 \text{ mW}$ or $\frac{144}{400} \text{ W}$


(c)
$$kVL: \dot{l}_{1}(200\Omega) - \dot{l}_{2}(200\Omega) = 0$$

 $\Rightarrow \dot{l}_{1} - \dot{l}_{2} = 0 \Rightarrow \dot{l}_{1} = \dot{l}_{2}$


2. (20 points) Use Node Voltage Analysis to find the voltage measured by the meter, V_1 . Assume that the meter is ideal (draws no current).


-3 for no NVA but cornet

- 3. In the real world, batteries are not ideal voltage sources. A Thévenin or Norton equivalent is a better (though still not perfect) model. Suppose a button cell battery has an output voltage of 1.5 V when connected directly to a voltmeter. It delivers 100 mA when connected directly to an ammeter.
 - (a) (10 points) Sketch the Thévenin equivalent of the battery and give values for $V_{\rm Th}$ and $R_{\rm Th}$.
 - (b) (5 points) Also sketch the Norton equivalent. What are $I_{\rm N}$ and $R_{\rm N}$?

- 4. Sketch a Wheatstone Bridge similar to the one we used in class. A thin wire, laid along a meter stick, is the potentiometer along one side of the bridge. Assume the wire's total resistance is 10Ω . Connected at 0 mm is $R_{\rm ref} = 11\Omega$. Connected to the reference and also to the wire at 1000 mm, is $R_{\rm test} = 99\Omega$. A galvanometer connects these two resistors to the potentiometer wiper.
 - (a) (5 points) At what position along the meter stick must the wiper be set to zero the galvanometer?
 - (b) (10 points) Unfortunately, the wire just broke somewhere between the 0 mm and 1 mm mark. You try to repair it, but there's an extra 1Ω of resistance at the repair. Now where must the wiper be set to zero the galvanometer?

