- 1. A mechanic drops a wrench across both terminals of a 12 V motorcycle battery. This puts 120 A through the wrench. Assume all the resistance is inside the motorcycle battery (R = 0 for the wrench.)
 - (a) (4 points) What is the total resistance of the circuit?

 (b) (4 points) How much power is dissipated?

 CLARIFIED IN THE AFTERNOON.

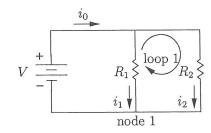
 - (c) (3 points) What is the voltage across the wrench?

MOTORCYCLE

(d) (6 points) Find and draw Thevenin and Norton equivalents for the battery (without the wrench).

(a)
$$V = IR$$

 $R = 12V | 120A = 0.1 \Omega$

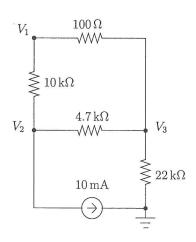

(c) SINCE THE WRENCH HAS R=0,
$$\Delta V = 0$$
.

(d)
$$V_{oc} = 12V$$
 $\Rightarrow R_{TH} = 0.1\Omega^{3}$
 $I_{sc} = 120 A$

THÉVENIN:

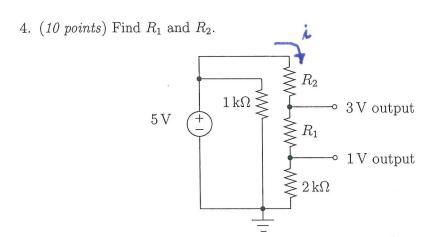
NORTON:

2. Consider the following circuit.



- (a) (4 points) Write KVL for loop 1.
- (b) (4 points) Write KCL for node 1.
- (c) (4 points) Combine the above to eliminate i_2 and solve for i_1 .

$$(a) - i_1 R_1 + i_2 R_2 = 0$$


(C)
$$i_1 = i_0 - i_1$$
; SUBSTITUTE THIS INTO (a):
 $-i_1R_1 + (i_0 - i_1)R_2 = 0$
 $\Rightarrow l_0R_2 = i_1(R_1 + R_2)$
 $\vdots i_1 = \frac{R_2}{R_1 + R_2}i_0$
OR EQUIVALENTLY: $i_1 = \frac{G_1}{G_1 + G_2}i_0$.

¹The result should be the familiar current divider formula.

3. (11 points) Set up, but do not solve, the equations for node voltage analysis of this circuit. The only unknowns should be V_1 , V_2 and V_3 .

NODE 1:
$$\frac{V_3 - V_1}{100} + \frac{V_2 - V_1}{10b} = 0$$

NODE 2: $\frac{V_1 - V_2}{10b} + \frac{V_3 - V_1}{4.7b} - 10 \text{ mA} = 0$
NODE 3: $\frac{V_2 - V_3}{4.7b} + \frac{V_1 - V_3}{100} + \frac{0 - V_3}{22b} = 0$
ALTERNATIVELY FOR NODE3 WE COULD GET THE VOLTAGE DIRECTLY:
 $V_3 = (22 \text{ b}\Omega)(-10 \text{ mA}) = -220 \text{ V}.$

NOTE THAT THE 16 RESISTOR IS IRRELEVANT!

METHOD 1:
$$|V = i \cdot 2k\Omega| \Rightarrow i = \frac{1}{2}mA$$
 $3V = |V + iR_1| \Rightarrow R_1 = \frac{2V}{i} = \frac{4k\Omega}{i}$
 $5V = 3V + iR_2 \Rightarrow R_2 = \frac{2V}{i} = \frac{4k\Omega}{i}$

COULD ALSO USE VOLTAGE DIVIDER FORMULA:

METHOD 2:
$$V_{OUT} = \frac{R_{BOTTOM}}{R_{TOTAL}} V_{TOP}$$
 V_{TOP}
 $V_{OUT} = \frac{R_{BOTTOM}}{R_{TOTAL}} V_{TOP}$
 V_{TOP}
 V_{OUT}
 V_{OUT