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Since power spectra are used in many practical measurement contexts, it is
worth understanding the typical units, how to interpret them, and how to arrive
at RMS values by integrating the spectra. It is easy to become confused since
real measurements take a finite period of time (one hopes), while the Fourier
transform is defined over infinite limits.

Consider an accelerometer time series a(t), measuring vibration in units of
g = 10 m/s2. If the data are taken over a time interval T , then the mean square
acceleration may be written

〈
a2
〉

=
1

T

∫ T

0

|a|2 dt, units: g2. (1)

The Fourier transform of the acceleration data, of course, must likewise be
calcuated by integating from time t = 0 to t = T :

ã(ω) =
1√
2π

∫ T

0

a(t) e−iωt dt, units: g s. (2)

If this bothers you, imagine that a square window function is used to define
a(t), and that the integral is over infinite limits. We now define a finite-time
vibration spectrum,

Sa(ω) =
ã∗ã

T
, units: g2 s. (3)

Using Parseval’s theorem, we may relate the quantities in equations 1 and 3:〈
a2
〉

=

∫ ∞
−∞

Sa(ω) dω. (4)

Note the infinite limits on frequency, since the transform integral (equation 2)
is defined for all ω. It also follows that a mean-square accelerations can be
unambiguously associated with any frequency interval by modifying the limits
of this integration.

We have used angular frequencies in keeping with typical notation in the-
oretical physics. However, now it should be evident to you why engineering
vibration power spectra are commonly given in g2/Hz (cf. equation 3), or am-
plitude spectra in g/

√
Hz.
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