NOW FOR AN EXAMPLE ...
A REMINDER ON HYPERBOLIC FUNCTIONS:

$$
\begin{aligned}
& \cos t \equiv \frac{1}{2}\left(e^{i t}+e^{-i t}\right) \\
& \cos (i t)=\frac{1}{2}\left(e^{-t}+e^{t}\right)(\equiv \cos 1 t, \quad \text { HYPEABOLIC CosinE } \\
& \operatorname{sinH} t \equiv i \sin (i t)=\frac{1}{2}\left(e^{t}-e^{-t}\right) \\
& \operatorname{TANH} t \equiv \frac{\sin H t}{\cos H t}=\frac{e^{t}-e^{-t}}{e^{t}+e^{-t}} \\
& \operatorname{SECH} t \equiv \frac{1}{\cos H t}=\frac{2}{e^{t}+e^{-t}} \xrightarrow{\operatorname{SECH} t}
\end{aligned}
$$

FIND $\sigma(\operatorname{SECH} t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \frac{2 e^{-i \omega t}}{e^{t}+e^{-t}} d t$.

- since sech is even, its fourier transform is even.
- Let's look at $\omega<0$, since that way the integral ON The UPPGQ HALF PLANE (Γ) WILL be ZERO $\left(1 . \varepsilon, e^{-i \omega z} \rightarrow 0\right.$ IF $y \gg 0$ AND $\left.\omega<0\right)$.

$$
\int_{-\infty}^{\infty} \frac{e^{-i \omega t} d t}{e^{t}+e^{-t}}=\oint \frac{e^{-i \omega z} d z}{e^{z}+e^{-z}}, \omega<0
$$

The poles are at:

$$
e^{z}=-e^{-z}=e^{i \pi(1+2 m)} e^{-z}
$$

$$
\therefore z_{m}=i \pi\left(m+\frac{1}{2}\right), m_{\mathbb{Z}}^{\varepsilon}
$$

ARE THEY SIMPLE POLES? IF SU, ThE FOLLOWING LIMIT WILC BE FINITE, AND WILL TURN OUT YO BE THE RESIDUE:

$$
\begin{aligned}
& \lim _{z \rightarrow Z_{m}} \frac{\left(z-z_{m}\right) e^{-i \omega z}}{e^{z}+e^{-z}} \xrightarrow{\text { FINIMOPITL }} \lim _{z \rightarrow z_{m}} \frac{e^{-i \omega z}}{e^{z}-e^{-z}}=\frac{e^{-i \omega z_{m}}}{2 e^{z_{m}}} \quad R_{m}=-e^{z_{m}}
\end{aligned}
$$

Now, RECOLL $Z_{m}=i \pi\left(m+\frac{1}{2}\right), \quad m \in \mathbb{Z}$.

$$
e^{z_{m}}=e^{i \pi / 2} e^{i \pi m}=i(-1)^{m}
$$

so the residues are:

$$
\begin{aligned}
& \text { TUE RESIDUES ARE: } \\
& R_{m}=\frac{-i}{2}(-1)^{m} e^{\left(m+\frac{1}{2}\right) \pi \omega}, \omega<0 .
\end{aligned}
$$

$$
\int_{-\infty}^{\infty} \frac{e^{-i \omega t}}{e^{t+e^{-t}}} d t=2 \pi i \sum R_{m}=\pi \sum_{m=0}^{\infty}(-1)^{m} e^{\left(m+\frac{1}{2}\right) \pi \omega} \text {. }
$$

sum only over poles in the upper half plane.
LET $x=e^{\frac{1}{2} \pi \omega}$. THEN THE SERIES IS:

$$
\pi x\left(1-x^{2}+x^{4}-x^{6}+\cdots\right)
$$

NOW, CONSIDER THE FOLLOWING EXAM BINOMIAL EXPANSION:

$$
\begin{aligned}
& \left(1+x^{2}\right)^{-1}=1-x^{2}+x^{4}-x^{6}+\cdots \cdot * \text { EVIDENTLY, } \\
& \int_{-\infty}^{\infty} \frac{e^{-i \omega t}}{e^{t}+e^{-t}} d t=\pi \frac{e^{\pi \omega / 2}}{1+e^{\pi \omega}}=\frac{\pi}{2} \operatorname{sEcH}(\pi \omega / 2)
\end{aligned}
$$

So,

$$
f^{\prime}(\operatorname{sech} t)=\sqrt{\frac{\pi}{2}} \operatorname{sECH}(\pi \omega / 2)
$$

ThE SECH IS SELF-FOURIER!

Find b such that $F[\operatorname{sech}(b t)]=\operatorname{sech}(b$ omega $)$.

$$
\text { * }(1+a)^{\alpha}=1+\alpha a+\frac{\alpha(\alpha-1)}{2!} a^{2}+\cdots=\sum_{k=0}^{\infty}\binom{\alpha}{k} a^{k}
$$

APPLICATION: SOLUTION OF \triangle LINEAR ODES (NAME EXAMPLE -CORRECT LIEF!?)

What's The ODE FOR $V(t)$?

$$
\begin{gathered}
\varepsilon-V=\dot{q} R ; \quad q=C V \Rightarrow \dot{q}=C \dot{V} \\
\varepsilon-V=R C \dot{V} \\
R C \dot{V}+V=\varepsilon(t)
\end{gathered}
$$

NOW, FOVRI战 TRANSFORM BOTH SIDES:

$$
\begin{aligned}
& \tilde{V}(\omega)[i \omega R c+1]=\tilde{\varepsilon}(\omega) \\
& \tilde{V}(\omega)=\frac{1}{1+i \omega R C} \tilde{\varepsilon}(\omega)
\end{aligned}
$$

IN FOURIER SPACE, THE ODE IS A SIMPLE, ALGEBRAIC EN, THE QUANTITY

$$
\text { THE QUANTITY } \quad \frac{1}{1+i \omega R C}=\frac{1-i \omega R C}{1+(\omega R C)^{2}}=A(\omega) e^{i \varphi(\omega)} \underbrace{\text { TH T }}_{\text {PHASE }}
$$ (PF)

IS ThE FREQUENCY RESPONSE OF THE SYSTEM. IT HAS a magnitude (gain or attenuation) and a phase:

ThE SOLUTION FOR $V(t)$ is:

$$
V(t)=\tilde{\sigma}^{-1}\left[\frac{\tilde{\varepsilon}(\omega)}{1+i \omega R C}\right]
$$

NOW, if $\varepsilon^{0}(t)=\varepsilon_{0} e^{i \omega_{f} t}$, THINGS BECOME VERY STRAKGHIFOR WARD:

$$
\begin{aligned}
\tilde{\varepsilon}(\omega) & =\sqrt{2 \pi} \varepsilon_{0} \delta\left(\omega-\omega_{f}\right) \\
V(t) & =\frac{1}{\sqrt{2 K}} \int_{-\infty}^{\infty} e^{i \omega t} \frac{\sqrt{2 \pi} \varepsilon_{0} \delta\left(\omega-\omega_{f}\right)}{1+i \omega R C} d \omega \\
& =\frac{\varepsilon_{0} e^{i \omega_{f} t}}{1+i \omega R C}=\varepsilon_{0} A e_{R(\omega)}^{i(\omega t+\varphi)}
\end{aligned}
$$

That is, $V=\varepsilon \underbrace{A e^{i \varphi}}_{R(\omega)}$ if $E(t)$ is Harmonic,
\rightarrow IN THUS CAGE, THE PHASE $\varphi=-$ TAN $^{-1} \omega R C<0$, WHICH MEANS THAT $V(t)$ LAGS $E(t)$.

ThE suttee suppresses high frequencies, with response:

You'll solve an ode in exercise 13.5 .
in hew and class examplish, we have been IGNORING TAE HOMOGENEOUS SOWN. OF ThEe ODE.

$$
\begin{gathered}
m \ddot{x}=-k x+f(t) \\
\tilde{x}(\omega)=\frac{\tilde{f}(\omega)}{k-m \omega^{2}}
\end{gathered}
$$

ThIS SEEMS TO IMPLE ThAT IS $f=0, x=0$. CONSIDER:

$$
\begin{aligned}
& m \ddot{x}+k x=f(t)=0 \\
& \left(k-m \omega^{2}\right) \tilde{x}(\omega)=0 \\
& \tilde{x}=0 \quad \text { OR } \quad k=m \omega^{2} \\
& \omega= \pm \sqrt{k / m} \equiv \omega_{0} \\
& \text { 1.E. } x=A e^{i \omega_{0} t}+B e^{-i \omega_{0} t}
\end{aligned}
$$

SINCE the equation is linear,

$$
x(t)=\tilde{j}^{-1}\left(\frac{\tilde{f}(\omega)}{k-m \omega^{2}}\right)+A e^{i \omega_{0} t}+B e^{-i \omega_{0} t}
$$

ADOING The hompgen Ears solution allows vs to Have ant initial condition, independent of Forcing.

CONSEQUENCE: THE FULL SORN. MUST INCLUDE THE HOMOGENEOUS PIECE:

$$
\tilde{x}(\omega)=\frac{\tilde{f}(\omega)}{k-m \omega^{2}}+A \delta(\omega-\sqrt{k / m})+B \delta(\omega+\sqrt{k / m})
$$

Q: What if $f(t)=\cos \sqrt{\frac{h}{m}} t$?

Q: WHAT DOES THIS IMPLY ABOUT THE SOLUTION TO OUR RC CIRCUIT?

