§ 17.9 STURM-LIOUVILLE EQUATIONS
many odes That commonly occur in
PHYSICS CAN BE PUT IN STURM - LIOUVILLE
FORM:
$p(x) \frac{dy}{dx^2} + \frac{dp}{dx} \frac{dy}{dx} + g(x)y + \lambda p(x)y = 0$
where $p(x)$ and $q(x)$ are real functions.
NOTE THE INVERTED SIGN OF I - WEIGHTING FACTOR THIS IS RHB'S CONVENTION OF EIGENFUNCTIONS
THE STURM - LIOUVILLE OPERATOR IS THEN IS WHERE
$\int \int y = \lambda y$
$\int \int \frac{1}{\rho} \frac{1}{Ax^{2}} \frac{p}{\rho} \frac{d}{dx} = \frac{g}{\rho}$
AX I OIN
= [d(nd), 87]
$= \frac{1}{\rho} \frac{d}{dx} \left(\frac{\rho}{dx} \right) + \frac{\sigma}{\rho} $

15 D HERMITIAN?

SHOW: (Df/g) = <fl Dg)

1.E., SHOW (Dflg) INVARIANT UNDER F* +> 9.

 $\int_{\alpha}^{b} -\frac{1}{\rho} \left[\frac{1}{dx} \left(p \frac{df^{*}}{dx} \right) + g f^{*} \right] g \rho dx$

 $= -\int_{a}^{b} \frac{d}{dx} \left(p \frac{df^{*}}{dx} \right) g dx - \int_{a}^{b} g f^{*} g dx$

SYMMETRIC UNDER + * + 9

FIRST TERM:

(udv = uv -)vdu

u = g, du = g dx; dr = dx dx, v = ()

g (pd+*) / b + (bpf*'g'dx

SYMMETRIC UNDER

THE WHOLE EXPRESSION WILL BE SYMMETRIC IF THIS TERM IS ZERO.

3 p p*/ = 0 (=) 19 15 HEAMITIAN

EIGENFUNCTION METHODS FOR DIFFERENTIAL EQUATIONS

				(**)**
Equation	p(x)	d(x)	۲,	$\rho(x)$
Hypergeometric	$x^{c}(1-x)^{a+b-c+1}$	0	-ap	$x^{c-1}(1-x)^{a+b-c}$
Legendre	$1-x^2$	0	$\ell(\ell+1)$	· +
Associated Legendre	$1-x^2$	$-m^2/(1-x^2)$	$\ell(\ell+1)$	1 2 2/1/2
Chebyshev	$(1-x^2)^{1/2}$	0	74	$(1-x^2)^{-1/2}$
Confluent hypergeometric	$x^c e^{-x}$	0 0	-a	$\chi_{c-1}e^{-\chi}$
Bessel*	×	$-v^2/x$	\ \ \ \	\times 1
Laguerre	xe^{-x}	0	Λ	© ×
Associated Laguerre	$x^{m+1}e^{-x}$	0	Λ	$\chi^{\prime\prime\prime}e^{-\chi}$
Hermite	e^{-x^2}	0	20	6-x-
Simple harmonic		0	ω^{2}	

Table 17.1 The Sturm-Liouville form (17.34) for important ODEs in the physical sciences and engineering. The asterisk denotes that, for Bessel's equanormalisation used here, but is not needed for the transformation into Sturmtion, a change of variable $x \to x/a$ is required to give the conventional Liouville form. GIVEN A MORE GENERAL EQUATION,

$$\alpha(x) y'' + b(x) y' + c(x) y + \lambda d(x) y = 0$$

CAN IT BE EXPRESSED IN STURM-LIDVILLE FARM?

RHB CLAIMS WE NEED ONLY MULTIPLY BY ...

$$F(x) = \exp\left(\int \frac{b(x) - \alpha'(x)}{\alpha(x)} dx\right) \quad (CF. \quad \text{Ed. } 17.39)$$

CHECK

HOW CAN WE TEST THIS?

$$p(x) = \alpha(x) F(x) 7$$

$$p'(x) \stackrel{?}{=} b(x) F(x)$$

$$g(x) = G(x)F(x)$$

$$\rho(x) = d(x) F(x)$$

$$p' = a'F + aF'$$

$$F' = b - \alpha F$$
, so

$$P' = \alpha' F + (b-\alpha') F = b F V$$

BUT NOTE: THERE IS OFTEN A SIMPLER OR MORE OBVIOUS WAY TO GET F(X). EXAMPLE ELECTROSTATICS IN CYCINDRICAL SYMMETRY

$$\nabla^2 = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2}{\partial r} + \frac{\partial^2}{\partial r^2}$$

$$\underline{\Phi}'' + \underline{\perp}\underline{\Phi}' = f(r)$$

EIGENVALUE PROBLEM:

A: MULTIPLY BY V.

* NOTE HOW THE P(r) = 1 13 NATURALLY INCLUDED

IN V2. THIS IS NORMAL!

A: TURNS OUT WE HAVE BESSEL'S EQUATION WITH V =0;

- BUT HOW DOED THE WHOLE EIGENVALUE THING WORK?

BESSER'S EQN 15: (P.568)

$$x^{\nu}y'' + xy' + (x^{\nu} - V^{\nu})y = 0$$
, solv. $y = J_{\nu}(x)$

LET X = X/d

$$\overline{X}$$
 $\overline{Y}''(\alpha \overline{X}) + \overline{Y}'(\alpha \overline{X}) - \frac{v^2}{\overline{X}} \overline{Y}(\alpha \overline{X}) + \alpha^2 \overline{X} \overline{Y}(\alpha \overline{X}) = 0$

$$(PRIME = \frac{d}{d\bar{x}}!)$$
 SOLN. $y = J_{\gamma}(\alpha \bar{x})$

14 X WOH

$$y \rightarrow J_v(\alpha r) = F(r)$$

NOTE THAT THERE ARE A CONTINUUM OF

$$\sum_{i}$$

ORTHONORMALITY: § 18.5.3

GARBRUL WITH NORMALIZATION - SHOULD HAVE