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ABSTRACT

A practical step-by-step guide to wavelet analysis is given, with examples taken from time series of the El Nifio—
Southern Oscillation (ENSO). The guide includes a comparison to the windowed Fourier transform, the choice of an
appropriate wavelet basis function, edge effects due to finite-length time series, and the relationship between wavelet
scale and Fourier frequency. New statistical significance tests for wavelet power spectra are developed by deriving theo-
retical wavelet spectra for white and red noise processes and using these to establish significance levels and confidence
intervals. It is shown that smoothing in time or scale can be used to increase the confidence of the wavelet spectrum.
Empirical formulas are given for the effect of smoothing on significance levels and confidence intervals. Extensions to
wavelet analysis such as filtering, the power Hovmoller, cross-wavelet spectra, and coherence are described.

The statistical significance tests are used to give a quantitative measure of changes in ENSO variance on interdecadal
timescales. Using new datasets that extend back to 1871, the Nifio3 sea surface temperature and the Southern Oscilla-
tion index show significantly higher power during 1880-1920 and 1960-90, and lower power during 1920-60, as well
as a possible 15-yr modulation of variance. The power Hovmoller of sea level pressure shows significant variations in

2-8-yr wavelet power in both longitude and time.

1. Introduction

Wavelet analysis is becoming a common tool for
analyzing localized variations of power within a time
series. By decomposing a time series into time—fre-
quency space, one is able to determine both the domi-
nant modes of variability and how those modes vary
in time. The wavelet transform has been used for nu-
merous studies in geophysics, including tropical con-
vection (Weng and Lau 1994), the El Nifio—Southern
Oscillation (ENSO; Gu and Philander 1995; Wang and
Wang 1996), atmospheric cold fronts (Gamage and
Blumen 1993), central England temperature (Baliunas
etal. 1997), the dispersion of ocean waves (Meyers et
al. 1993), wave growth and breaking (Liu 1994), and
coherent structures in turbulent flows (Farge 1992). A
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complete description of geophysical applications can
be found in Foufoula-Georgiou and Kumar (1995),
while a theoretical treatment of wavelet analysis is
given in Daubechies (1992).

Unfortunately, many studies using wavelet analy-
sis have suffered from an apparent lack of quantita-
tive results. The wavelet transform has been regarded
by many as an interesting diversion that produces col-
orful pictures, yet purely qualitative results. This mis-
conception is in some sense the fault of wavelet analy-
sis itself, as it involves a transform from a one-dimen-
sional time series (or frequency spectrum) to a diffuse
two-dimensional time—frequency image. This diffuse-
ness has been exacerbated by the use of arbitrary nor-
malizations and the lack of statistical significance tests.

In Lau and Weng (1995), an excellent introduction
to wavelet analysis is provided. Their paper, however,
did not provide all of the essential details necessary
for wavelet analysis and avoided the issue of statisti-
cal significance.

The purpose of this paper is to provide an easy-to-
use wavelet analysis toolkit, including statistical sig-
nificance testing. The consistent use of examples of
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ENSO provides a substantive additionto &

NINO3 SST

the ENSO literature. In particular, the
statistical significance testing allows
greater confidence in the previous wave-
let-based ENSO results of Wang and

(°C)

Wang (1996). The use of new datasets
with longer time series permits a more

robust classification of interdecadal
changes in ENSO variance.

The first section describes the datasets
used for the examples. Section 3 de-
scribes the method of wavelet analysis
using discrete notation. This includes a
discussion of the inherent limitations of

Period (years)

the windowed Fourier transform (WFT),
the definition of the wavelet transform, c.

the choice of a wavelet basis function,
edge effects due to finite-length time se-
ries, the relationship between wavelet
scale and Fourier period, and time series
reconstruction. Section 4 presents the
theoretical wavelet spectra for both
white-noise and red-noise processes.
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These theoretical spectra are compared to 1880

Monte Carlo results and are used to es-
tablish significance levels and confi-
dence intervals for the wavelet power
spectrum. Section 5 describes time or
scale averaging to increase significance
levels and confidence intervals. Section
6 describes other wavelet applications
such as filtering, the power Hovmoller,
cross-wavelet spectra, and wavelet co-
herence. The summary contains a step-
by-step guide to wavelet analysis.

2. Data

Several time series will be used for examples of
wavelet analysis. These include the Nifio3 sea surface
temperature (SST) used as a measure of the amplitude
of the El Nifio—Southern Oscillation (ENSO). The
Nifio3 SST index is defined as the seasonal SST av-
eraged over the central Pacific (5°S-5°N, 90°-
150°W). Data for 1871-1996 are from an area aver-
age of the U.K. Meteorological Office GISST2.3
(Rayner et al. 1996), while data for January—June 1997
are from the Climate Prediction Center (CPC) opti-
mally interpolated Nifio3 SST index (courtesy of D.
Garrett at CPC, NOAA). The seasonal means for the
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FiG. 1. (a) The Nifio3 SST time series used for the wavelet analysis. (b) The
local wavelet power spectrum of (a) using the Morlet wavelet, normalized by 1/
0 (0* = 0.54°C?). The left axis is the Fourier period (in yr) corresponding to the
wavelet scale on the right axis. The bottom axis is time (yr). The shaded contours
are at normalized variances of 1,2, 5, and 10. The thick contour encloses regions
of greater than 95% confidence for a red-noise process with a lag-1 coefficient of
0.72. Cross-hatched regions on either end indicate the “cone of influence,” where
edge effects become important. (c) Same as (b) but using the real-valued Mexican
hat wavelet (derivative of a Gaussian; DOG m = 2). The shaded contour is at
normalized variance of 2.0.

entire record have been removed to define an anomaly
time series. The Nifio3 SST is shown in the top plot
of Fig. 1a.

Gridded sea level pressure (SLP) data is from the
UKMOY/CSIRO historical GMSLP2.1f (courtesy of D.
Parker and T. Basnett, Hadley Centre for Climate Pre-
diction and Research, UKMO). The data is on a 5°
global grid, with monthly resolution from January
1871 to December 1994. Anomaly time series have
been constructed by removing the first three harmon-
ics of the annual cycle (periods of 365.25, 182.625,and
121.75 days) using a least-squares fit.

The Southern Oscillation index is derived from the
GMSLP2.1f and is defined as the seasonally averaged
pressure difference between the eastern Pacific (20°S,
150°W) and the western Pacific (10°S, 130°E).
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3. Wavelet analysis

This section describes the method of wavelet analy-
sis, includes a discussion of different wavelet func-
tions, and gives details for the analysis of the wavelet
power spectrum. Results in this section are adapted to
discrete notation from the continuous formulas given
in Daubechies (1990). Practical details in applying
wavelet analysis are taken from Farge (1992), Weng
and Lau (1994), and Meyers et al. (1993). Each sec-
tion is illustrated with examples using the Nifio3 SST.

a. Windowed Fourier transform

The WFT represents one analysis tool for extract-
ing local-frequency information from a signal. The
Fourier transform is performed on a sliding segment
of length T from a time series of time step ot and total
length Not, thus returning frequencies from 7! to
(26t)7" at each time step. The segments can be win-
dowed with an arbitrary function such as a boxcar (no
smoothing) or a Gaussian window (Kaiser 1994).

As discussed by Kaiser (1994), the WFT represents
an inaccurate and inefficient method of time—fre-
quency localization, as it imposes a scale or “response
interval” T into the analysis. The inaccuracy arises

- A from the aliasing of high- and low-frequency compo-
v (s w) nents that do not fall within the frequency range of the
a. Morlet window. The inefficiency comes from the 7/(26r) fre-
03 : quencies, which must be analyzed at each time step,
} regardless of the window size or the dominant frequen-
0.0 cies present. In addition, several window lengths must
) ! usually be analyzed to determine the most appropri-
.03 ‘ ‘ ate choice. For analyses where a predetermined scal-
4 1 0 1{ o Ingmaynotbe appropriate because of a wide range
of dominant frequencies, a method of time—frequency
b. Paul (m=4) localization that is scale independent, such as wave-
03 let analysis, should be employed. Discuss:
(1) Non-orthogonality

0.0 b. Wavelet transform (2) Uncertainty Principle
0.3 | | The wavelet transform can be used to analyze time
- 4 1 0 1 2 series that contain nonstationary power at many dif-
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FiG. 2. Four different wavelet bases, from Table 1. The plots
on the left give the real part (solid) and imaginary part (dashed)
for the wavelets in the time domain. The plots on the right give
the corresponding wavelets in the frequency domain. For plotting
purposes, the scale was chosen to be s = 106t. (a) Morlet, (b) Paul
(m=4), (c) Mexican hat (DOG m =2), and (d) DOG (m = 6).
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ferent frequencies (Daubechies 1990). Assume that
one has a time series, x , with equal time spacin ot

this function must have zero mean and be localized in
both time and frequency space (Farge 1992). An ex-
ample is the Morlet wavelet, consisting of a plane
wave modulated by a Gaussian:

wo(n) =", (1)

where @, is the nondimensional frequency, here taken
to be 6 to satisfy the admissibility condition (Farge
1992). This wavelet is shown in Fig. 2a.

The term “wavelet function” is used generically to
refer to either orthogonal or nonorthogonal wavelets.
The term “wavelet basis” refers only to an orthogo-
nal set of functions. The use of an orthogonal basis
implies the use of the discrete wavelet transform,
while a nonorthogonal wavelet function can be used
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with either the discrete or the continuous wavelet
transform (Farge 1992). In this paper, only the con-
tinuous transform is used, although all of the results
for significance testing, smoothing in time and scale,
and cross wavelets are applicable to the discrete wave-
let transform.

The continuous wavelet transform of a discrete se-
quence x is defined as the convolution of x with a
scaled and translated version of v/ (7):

zxw[n—n&]

where the (*) indicates the complex conjugate. By
varying the wavelet scale s and translating along the
localized time index n, one can construct a picture
showing both the amplitude of any features versus the
scale and how this amplitude varies with time. The
subscript 0 on yhas been dropped to indicate that this
W has also been normalized (see next section). Al-
though it is possible to calculate the wavelet transform
using (2), it is considerably faster to do the calcula-
tions in Fourier space.

To approximate the continuous wavelet transform,
the convolution (2) should be done N times for each
scale, where N is the number of points in the time se-
ries (Kaiser 1994). (The choice of doing all N convo-
lutions is arbitrary, and one could choose a smaller
number, say by skipping every other point in n.) By
choosing N points, the convolution theorem allows us
do all N convolutions simultaneously in Fourier space
using a discrete Fourier transform (DFT). The DFT
of x is

2

3

where k=0 ... N — 1 is the frequency index. In the
continuous limit, the Fourier transform of a function
W(t/s) is given by W (sw). By the convolution theorem,
the wavelet transform is the inverse Fourier transform
of the product:

N—
z V/* S0, zwknét ’ (4)
k=0

where the angular frequency is detined as
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Using (4) and a standard Fourier transform routine, one
can calculate the continuous wavelet transform (for a
given s) at all n simultaneously and efficiently.

c. Normalization

To ensure that the wavelet transforms (4) at each
scale s are directly comparable to each other and to the
transforms of other time series, the wavelet function
at each scale s is normalized to have unit energy:

12
A 2 A
o) (2] o). o

Examples of different wavelet functions are given in
Table 1 and illustrated in Fig. 2. Each of the unscaled
Yy, are defined in Table 1 to have

oo
.[ —oo

that is, they have been normalized to have unit energy.
Using these normalizations, at each scale s one has

NN
Wy (o)

,:1;

T

i(so,) =N, (7)

where N is the number of points. Thus, the wavelet
transform is weighted only by the amplitude of the
Fourier coefficients £, and not by the wavelet function.
If one is using the convolution formula (2), the nor-
malization is

A ),

where (1) is normalized to have unit energy.

d. Wavelet power spectrum

Because the wavelet function (1) is in general
complex, the wavelet transform W (s) is also complex.
The transform can then be divided into the real part,
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TaBLE 1. Three wavelet basis functions and their properties. Constant factors for y, and v, ensure a total energy of unity.

e-folding Fourier
Name VAG)) v, (so) time 7, wavelength 1
, 47s
Morlet VA ioom /2 ! 4H(a))e7(‘w7w") /2 \2s o, +\€;2 s
(w, = frequency) J
2"i"m! . \—(m+1) 2" m —sw 47s
Paul f (] —lT[) ————H(o)(sw)"e S/\/Z
[m(2m)! m(2m—1)! 2m+1
(m = order) N (2m) \/ ( ) m
m+1 m _am )
‘ ( 1) dd - (e—r]“/Z) ! (Sw)me—(.rw) o) 271s
DOG l"(m+l) n /F(m+1) \2s m+i
(m = derivative) \ 2 \ 2 \ 2

H(w) = Heaviside step function, H(®w) = 1 if @ > 0, H(w) = 0 otherwise.
DOG = derivative of a Gaussian; m = 2 is the Marr or Mexican hat wavelet.

R{W (s)}, and imaginary part, 3{W (s)}, or ampli-
tude, |W (s)|, and phase, tan"'[S{W (s)}/R{W (s)}].Fi-
nally, one can define the wavelet power spectrum as
|Wn(s)|2. For real-valued wavelet functions such as the
DOGs (derivatives of a Gaussian) the imaginary part
is zero and the phase is undefined.

To make it easier to compare different wavelet
power spectra, it is desirable to find a common nor-
malization for the wavelet spectrum. Using the nor-
malization in (6), and referring to (4), the expectation
value for |W (s)” is equal to N times the expectation
value for |% |*. For a white-noise time series, this ex-
pectation value is 6*/N, where 07 is the variance. Thus,
for a white-noise process, the expectation value for the
wavelet transform is |W (s)* = 6> at all n and s.

Figure 1b shows the normalized wavelet power
spectrum, |W (s)]"/0?, for the Nifio3 SST time series.
The normalization by 1/0* gives a measure of the
power relative to white noise. In Fig. 1b, most of the
power is concentrated within the ENSO band of 28
yr, although there is appreciable power at longer peri-
ods. The 2—8-yr band for ENSO agrees with other stud-
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ies (Trenberth 1976) and is also seen in the Fourier
spectrum in Fig. 3. With wavelet analysis, one can see
variations in the frequency of occurrence and ampli-
tude of El Nifio (warm) and La Nifia (cold) events.
During 1875-1920 and 1960-90 there were many
warm and cold events of large amplitude, while dur-
ing 1920-60 there were few events (Torrence and
Webster 1997). From 1875-1910, there was a slight
shift from a period near 4 yr to a period closer to 2 yr,
while from 1960-90 the shift is from shorter to longer
periods.

These results are similar to those of Wang and
Wang (1996), who used both wavelet and waveform
analysis on ENSO indices derived from the Compre-
hensive Ocean—Atmosphere Data Set (COADS)
dataset. Wang and Wang’s analysis showed reduced
wavelet power before 1950, especially 1875-1920. The
reduced power is possibly due to the sparseness and de-
creased reliability of the pre-1950 COADS data (Folland
et al. 1984). With the GISST2.3 data, the wavelet trans-
form of Nifio3 SST in Fig. 1b shows that the pre-1920
period has equal power to the post-1960 period.
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FiG. 3. Fourier power spectrum of Nifio3 SST (solid),
normalized by N/(20%). The lower dashed line is the mean red-
noise spectrum from (16) assuming a lag-1 of oc=0.72. The upper
dashed line is the 95% confidence spectrum.

e. Wavelet functions

One criticism of wavelet analysis is the arbitrary
choice of the wavelet function, (7). (It should be
noted that the same arbitrary choice is made in using
one of the more traditional transforms such as the Fou-
rier, Bessel, Legendre, etc.) In choosing the wavelet
function, there are several factors which should be
considered (for more discussion see Farge 1992).

1) Orthogonal or nonorthogonal. In orthogonal
wavelet analysis, the number of convolutions at
each scale is proportional to the width of the wave-
let basis at that scale. This produces a wavelet spec-
trum that contains discrete “blocks” of wavelet
power and is useful for signal processing as it gives
the most compact representation of the signal. Un-
fortunately for time series analysis, an aperiodic
shift in the time series produces a different wave-
let spectrum. Conversely, a nonorthogonal analy-
sis (such as used in this study) is highly redundant
at large scales, where the wavelet spectrum at ad-
jacent times is highly correlated. The nonorthog-
onal transform is useful for time series analysis,
where smooth, continuous variations in wavelet
amplitude are expected.

2) Complex or real. A complex wavelet function will
return information about both amplitude and phase

66

and is better adapted for capturing oscillatory be-
havior. A real wavelet function returns only a
single component and can be used to isolate peaks
or discontinuities.

3) Width. For concreteness, the width of a wavelet
function is defined here as the e-folding time of the
wavelet amplitude. The resolution of a wavelet
function is determined by the balance between the
width in real space and the width in Fourier space.
A narrow (in time) function will have good time
resolution but poor frequency resolution, while a
broad function will have poor time resolution, yet
good frequency resolution.

4) Shape.The wavelet function should reflect the type
of features present in the time series. For time se-
ries with sharp jumps or steps, one would choose
a boxcar-like function such as the Harr, while for
smoothly varying time series one would choose a
smooth function such as a damped cosine. If one
is primarily interested in wavelet power spectra,
then the choice of wavelet function is not critical,
and one function will give the same qualitative
results as another (see discussion of Fig. 1 below).

Four common nonorthogonal wavelet functions are
given in Table 1. The Morlet and Paul wavelets are
both complex, while the DOGs are real valued. Pic-
tures of these wavelet in both the time and frequency
domain are shown in Fig. 2. Many other types of wave-
lets exist, such as the Haar and Daubechies, most of
which are used for orthogonal wavelet analysis (e.g.,
Weng and Lau 1994; Mak 1995; Lindsay et al. 1996).
For more examples of wavelet bases and functions, see
Kaiser (1994).

For comparison, Fig. 1c shows the same analysis
as in 1b but using the Mexican hat wavelet (DOG,
m = 2) rather than the Morlet. The most noticeable dif-
ference is the fine scale structure using the Mexican
hat. This is because the Mexican hat is real valued and
captures both the positive and negative oscillations of
the time series as separate peaks in wavelet power. The
Morlet wavelet is both complex and contains more
oscillations than the Mexican hat, and hence the wave-
let power combines both positive and negative peaks
into a single broad peak. A plot of the real or imagi-
nary part of W (s) using the Morlet would produce a
plot similar to Fig. 1c. Overall, the same features ap-
pear in both plots, approximately at the same locations,
and with the same power. Comparing Figs. 2a and 2c,
the Mexican hat is narrower in time-space, yet broader
in spectral-space than the Morlet. Thus, in Fig. 1c, the
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peaks appear very sharp in the time direction, yet are
more elongated in the scale direction. Finally, the re-
lationship between wavelet scale and Fourier period
is very different for the two functions (see section 3h).

f. Choice of scales

Once a wavelet function is chosen, it is necessary
to choose a set of scales s to use in the wavelet trans-
form (4). For an orthogonal wavelet, one is limited to
a discrete set of scales as given by Farge (1992). For
nonorthogonal wavelet analysis, one can use an arbi-
trary set of scales to build up a more complete picture.
It is convenient to write the scales as fractional pow-
ers of two:

s; =527, j=0,1,....J 9)

J=68j"log,(Nét/s,), (10)
where s is the smallest resolvable scale and J deter-
mines the largest scale.

proximately 267. The choice of a sufficiently small &

depends on the width in spectral-space of the wavelet
function. For the Morlet wavelet, a dj of about 0.5 is
the largest value that still gives adequate sampling in
scale, while for the other wavelet functions, a larger
value can be used. Smaller values of dj give finer reso-
lution.

In Fig. 1b, N =506, 6t=1/4 yr,s =26t, 6j=0.125,
and J = 56, giving a total of 57 scales ranging from
0.5 yr up to 64 yr. This value of §j appears adequate
to provide a smooth picture of wavelet power.

g. Cone of influence

Because one is dealing with finite-length time se-
ries, errors will occur at the beginning and end of the
wavelet power spectrum, as the Fourier transform in
(4) assumes the data is cyclic. One solution is to pad
the end of the time series with zeroes before doing the
wavelet transform and then remove them afterward
[for other possibilities such as cosine damping, see
Meyers et al. (1993)]. In this study, the time series is
padded with sufficient zeroes to bring the total length
N up to the next-higher power of two, thus limiting
the edge effects and speeding up the Fourier transform.

Padding with zeroes introduces discontinuities at
the endpoints and, as one goes to larger scales, de-
creases the amplitude near the edges as more zeroes
enter the analysis. The cone of influence (COI) is the

Bulletin of the American Meteorological Society

TaBLE 2. Empirically derived factors for four wavelet bases.

Name Cs Y dj, v,(0)
Morlet (@, = 6) 0.776 232 0.60 i
Paul (m = 4) 1.132 1.17 15 1.079
Marr (DOGm=2)  3.541 143 14 0.867
DOG (m = 6) 1.966 137 097  0.884

C,= reconstruction factor.

Y= decorrelation factor for time averaging.
0j, = factor for scale averaging.

region of the wavelet spectrum in which edge effects
become important and is defined here as the e-fold-
ing time for the autocorrelation of wavelet power at
each scale (see Table 1). This e-folding time is cho-
sen so that the wavelet power for a discontinuity at the
edge drops by a factor e and ensures that the edge
effects are negligible beyond this point. For cyclic
series (such as a longitudinal strip at a fixed latitude),
there is no need to pad with zeroes, and there is no COI.

The size of the COI at each scale also gives a mea-
sure of the decorrelation time for a single spike in the
time series. By comparing the width of a peak in the
wavelet power spectrum with this decorrelation time,
one can distinguish between a spike in the data (pos-
sibly due to random noise) and a harmonic component
at the equivalent Fourier frequency.

The COl is indicated in Figs. 1b and 1c by the cross-
hatched regions. The peaks within these regions have
presumably been reduced in magnitude due to the zero
padding. Thus, it is unclear whether the decrease in 2—
8-yr power after 1990 is a true decrease in variance or
an artifact of the padding. Note that the much narrower
Mexican hat wavelet in Fig. 1c has a much smaller
COI and is thus less affected by edge effects.

h. Wavelet scale and Fourier frequency

An examination of the wavelets in Fig. 2 shows that
the peak in {/(s®) does not necessarily occur at a fre-
quency of s7'. Following the method of Meyers et al.
(1993), the relationship between the equivalent Fou-
rier period and the wavelet scale can be derived ana-
lytically for a particular wavelet function by substitut-
ing a cosine wave of a known frequency into (4) and
computing the scale s at which the wavelet power spec-
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Q: What if W_n(s_j)

trum reaches its maximum. For the Morlet wavelet
with @, = 6, this gives a value of A=1.03s, where A is
the Fourier period, indicating that for the Morlet wave-
let the wavelet scale is almost equal to the Fourier
period. Formulas for other wavelet functions are given
in Table 1, while Fig. 2 gives a graphical representation.

In Figs. 1b.c, the ratio of Fourier period to wavelet
scale can be seen by a comparison of the left and right
axes. For the Morlet, the two are nearly identical, while
for the Mexican hat, the Fourier period is four times
larger than the scale. This ratio has no special signifi-
cance and is due solely to the functional form of each
wavelet function. However, one should certainly con-
vert from scale to Fourier period before plotting, as
presumably one is interested in equating wavelet
power at a certain time and scale with a (possibly short-
lived) Fourier mode at the equivalent Fourier period.

i. Reconstruction

Since the wavelet transform is a bandpass filter with
a known response function (the wavelet function), it
is possible to reconstruct the original time series us-
ing either deconvolution or the inverse filter. This is
straightforward for the orthogonal wavelet transform
(which has an orthogonal basis), but for the continu-
ous wavelet transform it is complicated by the redun-
dancy in time and scale. However, this redundancy
also makes it possible to reconstruct the time series
using a completely different wavelet function, the easi-
est of which is a delta (8) function (Farge 1992). In
this case, the reconstructed time series is just the sum
of the real part of the wavelet transform over all scales:

= \delta_{ij}?

Discuss. s L RWs)}

X, = . 11
C5l//0(0) =0 S;‘/z (b

The factor y,(0) removes the energy scaling, while the
s converts the wavelet transform to an energy den-
sity. The factor C;comes from the reconstruction of a
o function from its wavelet transform using the func-
tion y; (7). This Cjis a constant for each wavelet func-
tion and is given in Table 2. Note that if the original
time series were complex, then the sum of the com-
plex W (s) would be used instead.

To derive C; for a new wavelet function, first as-
sume a time series with a d function at time n =0, given
by x, = & . This time series has a Fourier transform
£,=N', constant for all k. Substituting £_into (4), at
time n = 0 (the peak), the wavelet transform becomes
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X
~ S wk (12)
N =
The reconstruction (11) then gives
5o & KWy (s)}
5= 172 . (13)

v,(0) 5 s

The C;is scale independent and is a constant for each
wavelet function.

The total energy is conserved under the wavelet
transform, and the equivalent of Parseval’s theorem
for wavelet analysis is

2
IIEARR ‘VV”(SJ)‘
o’ _CE_NZ(;; : , (14)

where 07 is the variance and a 6 function has been as-
sumed for reconstruction. Both (11) and (14) should
be used to check wavelet routines for accuracy and to
ensure that sufficiently small values of s, and &j have
been chosen.

For the Nifio3 SST, the reconstruction of the time
series from the wavelet transform has a mean square
error of 1.4% or 0.087°C.

4. Theoretical spectrum and significance
levels

To determine significance levels for either Fourier
or wavelet spectra, one first needs to choose an appro-
priate background spectrum. It is then assumed that
different realizations of the geophysical process will
be randomly distributed about this mean or expected
background, and the actual spectrum can be compared
against this random distribution. For many geophysi-
cal phenomena, an appropriate background spectrum
is either white noise (with a flat Fourier spectrum) or
red noise (increasing power with decreasing frequency).

A previous study by Qiu and Er (1995) derived the
mean and variance of the local wavelet power spec-
trum. In this section, the theoretical white- and red-
noise wavelet power spectra are derived and compared
to Monte Carlo results. These spectra are used to es-
tablish a null hypothesis for the significance of a peak
in the wavelet power spectrum.
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Q: What if W_n(s_j) = \delta_{ij}?
Discuss.


a. Fourier red noise spectrum
Many geophysical time series can be modeled as
either white noise or red noise. A simple model for red
noise is the univariate lag-1 autoregressive [AR(1), or
Markov] process:
Xn :axn—l +Zn’ (15)
where o is the assumed lag-1 autocorrelation, x, = 0,
and z_is taken from Gaussian white noise. Following

Gilman et al. (1963), the discrete Fourier power spec-
trum of (15), after normalizing, is

_ 1-o’
1+a® —20cos(27mk/N) ’

B, (16)

where k=0 ... N/2 is the frequency index. Thus, by
choosing an appropriate lag-1 autocorrelation, one can
use (16) to model a red-noise spectrum. Note that oc =0
in (16) gives a white-noise spectrum.

The Fourier power spectrum for the Nifio3 SST is
shown by the thin line in Fig. 3. The spectrum has been
normalized by N/262, where N is the number of points,
and o is the variance of the time series. Using this
normalization, white noise would have an expectation
value of 1 at all frequencies. The red-noise background
spectrum for ¢ = 0.72 is shown by the lower dashed
curve in Fig. 3. This red-noise was estimated from (¢,
+ /)2, where o, and o, are the lag-1 and lag-2
autocorrelations of the Nifio3 SST. One can see the
broad set of ENSO peaks between 2 and 8 yr, well
above the background spectrum.

b. Wavelet red noise spectrum

The wavelet transform in (4) is a series of bandpass
filters of the time series. If this time series can be
modeled as a lag-1 AR process, then it seems reason-
able that the local wavelet power spectrum, defined
as a vertical slice through Fig. 1b, is given by (16). To
test this hypothesis, 100 000 Gaussian white-noise
time series and 100 000 AR(1) time series were con-
structed, along with their corresponding wavelet power
spectra. Examples of these white- and red-noise wave-
let spectra are shown in Fig. 4. The local wavelet spec-
tra were constructed by taking vertical slices at time
n =256. The lower smooth curves in Figs. 5a and 5b
show the theoretical spectra from (16). The dots show
the results from the Monte Carlo simulation. On av-
erage, the local wavelet power spectrum is identical
to the Fourier power spectrum given by (16).
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FiG. 4. (a) The local wavelet power spectrum for a Gaussian
white noise process of 512 points, one of the 100 000 used for
the Monte Carlo simulation. The power is normalized by 1/6%, and
contours are at 1,2, and 3. The thick contour is the 95% confidence
level for white noise. (b) Same as (a) but for a red-noise AR(1)
process with lag-1 of 0.70. The contours are at 1, 5, and 10. The
thick contour is the 95% confidence level for the corresponding
red-noise spectrum.

Therefore, the lower dashed curve in Fig. 3 also
corresponds to the red-noise local wavelet spectrum.
A random vertical slice in Fig. 1b would be expected
to have a spectrum given by (16). As will be shown in
section 5a, the average of all the local wavelet spectra
tends to approach the (smoothed) Fourier spectrum of
the time series.

c. Significance levels

The null hypothesis|is defined for the wavelet power
spectrum as follows: It is assumed that the time series
has a mean power spectrum, possibly given by (16);
if a peak in the wavelet power spectrum is significantly
above this background spectrum, then it can be as-
sumed to be a true feature with a certain percent con-
fidence. For definitions, “significant at the 5% level”
is equivalent to “the 95% confidence level,” and im-
plies a test against a certain background level, while
the “95% confidence interval” refers to the range of
confidence about a given value.

The normalized Fourier power spectrum 