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Markov Chain and Metropolis-Hastings.
Suppose some system has a state described by . A Markov Chain is a series of states

 selected by a random process in which the selection of state 
depends only on the state immediately prior, . That is,

where  is called the transition probability matrix.

Comment: The Roman letter  is used for convenience. The state could be an integer, a real
number, a vector, etc. The theorems associated with Markov chains and Metropolis-Hastings
(below) generally assume a finite domain . With care, though, we can work with infinite
domains.
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Detailed Balance
Under certain assumptions, the sequence of states that come out of the Markov chain
converge toward an equilibrium probability distribution , such that

The above condition is called detailed balance. If  is uniform, then  is symmetric:
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Metropolis-Hastings
Claim: Given a random process characterized by a symmetric transition probability matrix 

, we can build a Markov chain with a desired equilibrium distribution  by the
Metropolis-Hastings algorithm:

1. Propose a random jump from  to  based on a symmetric transition probability
matrix, .

2. If :
A. Accept the jump. Increment .
B. Return to step 1.

3. Generate a random number .
4. If ,

A. Accept the jump. Increment .
B. Return to step 1.

5. Do not accept the jump (  is not incremented). Return to step 1.

A shorter way of saying it is:

1. Propose a random jump from  to  based on a symmetric .
2. If , accept the jump.
3. Otherwise, accept the jump with probability .

The above version could possibly be misunderstood, so I gave the more explicit version of
the algorithm first.
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Proof
Let's calculate the transition probability matrix, , for the above algorithm.

Case 1: 

Case 2: 

Case 3: 

In all three of the above cases, since , the detailed balance condition is met:

Therefore,  is the equilibrium distribution corresponding to .

Comment: A key feature of Metropolis-Hastings is that, to create a Markov chain that
converges toward , all we need is a way to calculate the likelihood ratio, .

If only we had an interesting problem that gives us likelihood ratios , we
would be in a position to solve that problem for the distribution  using Markov
Chains and Metropolis-Hastings.
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Demonstration
The following code demonstrates the Metropolis-Hastings algorithm using

= { , and ' (!) = .%!$
,12*
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else.
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2 +2

In [1]: # Parameters
x0   =  5.0  # Initial state
a    =  1.0  # Jump width
b    = -3.0  # Gaussian centroid
fwhm =  1.0  # Gaussian full width at half maximum
 
# Environment
import numpy as np
import scipy.special as sp
import matplotlib.pyplot as plt
%matplotlib notebook
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c  =  fwhm/( 2*np.sqrt(2*np.log(2)) )  # Gaussian standard deviation
 
# Implement T_xy
def proposal(x):
    return x + 2*a*(np.random.rand() - 0.5)
 
# Implement P(x)
def gaussian(x):
    return np.exp( -(x-b)**2/(2*c**2) )/( np.sqrt(2*np.pi)*c )
 
def glike(x,y):
    return gaussian(y)/gaussian(x)
 
# Metropolis-Hastings
def metro(x0=0, jump_func=proposal, likelihood_ratio=glike, N=1000
    x = np.empty((N))
    x[0] = x0
    i=0
    misses=0
    for i in range(N-1):
        x[i+1] = jump_func(x[i])
        ratio = likelihood_ratio(x[i],x[i+1])
        if ratio < 1:
            if np.random.rand() > ratio:
                x[i+1] = x[i]
                misses+=1
    return x,(N-misses)/N
 
# Incorrect implementation of Metropolis-Hastings
def metro_wrong(x0=0, jump_func=proposal, likelihood_ratio=glike, 
    x = np.empty((N))
    x[0] = x0
    i=0
    misses=0
    while i < N-1:
        x[i+1] = jump_func(x[i])
        ratio = likelihood_ratio(x[i],x[i+1])
        if ratio >= 1:
            i+=1
        else:
            if np.random.rand() <= ratio:
                i+=1
            else:
                misses+=1
    return x,N/(N+misses)
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In [2]:

Acceptance rate =  0.56

(x,acceptance_rate) = metro(x0=x0, N=200)
print('Acceptance rate = ',acceptance_rate)
plt.figure()
plt.plot(x)
plt.title(r'Markov Chain')
plt.xlabel(r'Step')
plt.ylabel(r'$x$')
plt.show();
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Points for discussion
1. In many applications the likelihood ratio is expensive to calculate. The performance of

the Markov Chain is therefore optimal when we can characterize  with as few
evaluations of the likelihood ratio as possible.

2. Let's define the acceptance rate as the fraction of proposals that are accepted.
A. How would efficiency be affected by a low acceptance rate, perhaps 0.01?
B. How would efficiency be affected by a high acceptance rate, perhaps 0.99?
C. Roughly what acceptance rate would you aim for to maximize efficiency?

3. How do the jump width and the width of  influence the acceptance rate?

' (!)

' (!)

Is  as predicted?
Once any initial transient ( ) dies out, the Markov chain approaches its equilibrium
distribution, . In my example, we expect the  values to be distributed as a Gaussian
with mean  and standard deviation . I will check this assertion using the Kolmogorov-
Smirnov test, which is described in my notes on non-parametric statistics
(http://solar.physics.montana.edu/kankel/ph567/LectureNotes/07.1.Stats-
nonparametric.pdf). It is also described in Section 14.3 of Numerical Recipes in C
(https://s3.amazonaws.com/nrbook.com/book_C210.html).

How to get it wrong.
My first attempt at writing the function metro()  is preserved above as metro_wrong() .
Try substituting that in, and you'll see the CDF does not match expectations! Why? The two
functions are written somewhat differently, but it comes down to what happens when the
jump is not accepted. Do I keep drawing proposals until one is accepted, or do I just say 

 and move on?

' (!)
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In [3]:

Acceptance rate =  0.49513
Standard deviation =  1.0003949240458114

# Generate a new Markov chain.
 
a  = 3.0    # Jump width
b  = 0.0    # Gaussian mean
c  = 1.0    # Standard deviation
x0 = 0.0    # Initial state -- Start on the mean, so there's no transient.
Nx = 100000 # Let's have a larger dataset this time!
 
(x,acceptance_rate) = metro(x0=x0, N=Nx)
print('Acceptance rate = ',acceptance_rate)
sdev = np.std(x)
print('Standard deviation = ',sdev)
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In [4]: # Calculate the cumulative distribution
x_CDF = np.sort(x)
CDF = 0.5 + np.arange(Nx)
    # CDF just left of x_min is 0, and just to the right it is 1; 0.5 is a compromise. 
CDF_g = Nx*(1 + sp.erf(x_CDF/np.sqrt(2)))/2
plt.figure()
plt.plot(x_CDF,CDF, 'k-', label=r'Markov chain CDF')
plt.plot(x_CDF, CDF_g, 'y--', label=r'Gaussian CDF')
plt.ylabel(r'Counts below $x$')
plt.xlabel(r'$x$')
plt.legend()
plt.show()
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Markov chain autocorrelation
The above plot shows a good correspondence between the Markov chain and the
cumulative distribution of the Gaussian. But before I can quantify how good it is, I need to
understand how many independent Gaussian deviates are in my Markov chain.

Successive states of the Markov chain are not statistically independent. The sequence may
be approximately described as red noise (https://kls2177.github.io/Climate-and-
Geophysical-Data-Analysis/chapters/Week5/n_eff.html),

where  are a sequence of independent random numbers, such that . This results
in an exponentially decaying autocorrelation:

Therefore a Markov chain with  elements does not have  independent degrees of
freedom. Assuming the autocorrelation is normalized in the usual way ( ), then the
number of degrees of freedom is approximated as follows:

where  is called the lag-1 autocorrelation.
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In [5]: # Autocorrelation to estimate Neff.
# The lesson is that there are fewer independent random samples
# in the Markov chain than one might naively suppose.
 
# Estimate effective DOF using Lag-1 autocorrelation
 
# see https://stackoverflow.com/questions/643699/how-can-i-use-numpy-correlate-to-do-autocorrelation
def autocorr(x):
    result = np.correlate(x, x, mode='full')
    return result[result.size//2:]
 
 
autocorrelation = autocorr(x)
autocorrelation /= np.max(autocorrelation) # The usual normalization, a(0)=1
lag1 = autocorrelation[1]
Neff = Nx*(1-lag1)/(1+lag1)
print("Nx = ", Nx, "; Effective sample size Neff = ",Neff)
print("Nx/Neff = ",Nx/Neff)
 
 
plt.figure()
lag = np.arange(int(3*Nx/Neff))
amodel = lag1**lag
plt.scatter(lag,amodel,s=80, facecolors='none', edgecolors='r',label
plt.plot(autocorrelation,'.-',label='autocorrelation')
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In [6]:

Nx =  100000 ; Effective sample size Neff =  26805.060404559492
Nx/Neff =  3.730638860376908

plt.plot(0*x,':')
plt.xlim((-1,50))
plt.xlabel('Lag, $n$')
plt.ylabel('Autocorrelation')
plt.title('Autocorrelation of Markov Chain')
 
 
plt.legend()
plt.show();
 
 

# Kolmogorov-Smirnov statistic (NR in C equations 14.3.5, 7, 9)
discrepancy = CDF - CDF_g
D = (np.amax(np.abs(discrepancy)) + 0.5) / Nx
    # (see note in cell above about 0.5)
lam = D*( np.sqrt(Neff) + 0.12 + 0.11/np.sqrt(Neff) )
j = np.arange(1,10)
p = 2*np.sum( (-1)**(j-1) * np.exp(-2*j*j*lam*lam) )
print('D = ',D)
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D =  0.00534723270293518
lambda =  0.8761076222629274
p-value =  0.42655011865895776

The null hypothesis (that the x array is drawn from the specified Gau
ssian
 distribution) is rejected (or not) with confidence  57.3449881341042
3 %

print('lambda = ',lam)
print('p-value = ',p)
print('\nThe null hypothesis (that the x array is drawn from the specified Gaussian\n'
      'distribution) is rejected (or not) with confidence ',100*(1
 
plt.figure()
plt.plot(x_CDF, discrepancy, label='discrepancy')
plt.plot(x_CDF, np.sqrt(Nx)*np.ones((Nx)), 'r--', label='$\pm\sqrt{N_x}$'
plt.plot(x_CDF, -np.sqrt(Nx)*np.ones((Nx)), 'r--')
plt.plot(x_CDF, np.sqrt(Neff)*np.ones((Nx)), 'r:', label='$\pm\sqrt{N_{eff}}$'
plt.plot(x_CDF, -np.sqrt(Neff)*np.ones((Nx)), 'r:')
plt.title('Departure from Gaussian CDF')
plt.ylabel(r'CDF discrepancy (counts)')
plt.xlabel(r'$x$')
plt.legend(loc='upper right', framealpha=1.0)
plt.show();
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Bimodal Distributions
The Markov chain can have difficulty exploring bimodal (or multi-modal) distributions. The
chain can get stuck in one peak of the distribution, and you might think the distribution has
been explored sufficiently when it really has not.

Example

In [7]:

Acceptance rate =  0.5802

# Parameters
Nx   = 10000   # Number of Markov chain iterations
sep  =  4.0    # Separation of 2 Gaussians
x0   =  0.0    # Initial state
a    =  1.0    # Jump width
b1   =  sep/2  # Gaussian 1 centroid
b2   = -sep/2  # Gaussian 2 centroid
fwhm =  1.0    # Gaussian full width at half maximum
c  =  fwhm/( 2*np.sqrt(2*np.log(2)) )  # Gaussian standard deviation
# print('Gaussian standard deviation = ',c)
 
# Implement bimodal P(x)
def doublegaussian(x):
    return np.exp( -(x-b1)**2/(2*c**2) )/( np.sqrt(2*np.pi)*c ) + \
           np.exp( -(x-b2)**2/(2*c**2) )/( np.sqrt(2*np.pi)*c )
 
def dglike(x,y):
    return doublegaussian(y)/doublegaussian(x)
 
(x,acceptance_rate) = metro(x0=x0, likelihood_ratio=dglike, N=Nx)
print('Acceptance rate = ',acceptance_rate)
print('mean value = ', np.mean(x))
 
plt.figure()
plt.plot(x,'k.',label='Markov chain')
plt.plot(np.array((0,Nx)),np.array((b1,b1)),'c--',label='mode 1')
plt.plot(np.array((0,Nx)),np.array((b2,b2)),'y--',label='mode 2')
plt.title(r'Markov Chain')
plt.xlabel(r'Step')
plt.ylabel(r'$x$')
plt.legend()
plt.show();
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mean value =  1.253589127430413
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In [8]: # Compare histogram to target distribution P(x)
 
Nbins = 30  # Number of histogram bins
dxhist = 2*sep/Nbins # Bin spacing for histogram
dx = 0.01   # Sample spacing for P(x)
 
plt.figure()
plt.title('Histogram of Markov Chain')
plt.xlabel('$x$')
plt.ylabel('frequency')
plt.hist(x,bins=Nbins, range=(-sep,sep),label='Markov chain')
 
xs = np.arange(-sep,sep,dx)
actual = doublegaussian(xs)
actual *= Nx*dxhist/(np.sum(actual)*dx)
plt.plot(xs,actual,label='Target distribution')
plt.legend()
plt.show();
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Aside: Generating random numbers from a known PDF
Numerical libraries commonly offer the capability to generate random numbers (deviates)
with uniform, Gaussian, and Poissonian distributions. For many purposes, it is useful to
know how to generate random numbers with some other probability distribution function
(PDF). Given random number  distributed according to PDF , we can generate a
differently distributed parameter  by defining  for some function . What, then,
would be the form of the distribution ?

To obtain an expression for , we must assume that  is invertible. Let 
.

! 3 (!)
$ $ = 4(!) 4
5($)
3 (!) 6! = 5($) 6$.

5($) 4(!)
7($) ≡ ($) = !4−1

5($) = 3 (7($)) .67
6$

Lorentzian-distributed numbers

Suppose, for example,

This can be realized readily by taking the usual uniform deviates  and setting 
. Now, let

It follows that

Consequently, the recipe (1) gives Lorentzian distributed numbers with  equal to the half
width at half maximum.

3 (!) = { 1,0, − ≤ ! ≤ ,1
2

1
2

else.
1 ∈ [0, 1)

! = 1 − 12
$ = 8 tan ,!. (1)

5($) = ( ) = ,1
,
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6$
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Improved jump proposal function
The difficulty with multi-modal distributions can be ameliorated to some extent by modifying
the jump proposal strategy. The proposal2()  function below draws its proposals from a
Lorentzian rather than a uniform distribution. Since the tails of the Lorentzian are very broad,
very large jumps will occasionally be proposed, so that  is more thoroughly explored. To
make a fair comparison, I have tuned the width of this Lorentzian to get a similar acceptance
rate as with my original proposal()  function.

My simple approach improves the behavior of the Markov chain for the example, but the
result is still imperfect. Moreover, if you imagine a multidimensional state space, it could be
difficult to discover another mode with just the occasional large jump. The state of the art in
dealing with such problems is parallel tempering
(https://en.wikipedia.org/wiki/Parallel_tempering).

' (!)

In [9]: # Implement T_xy. Note that $a$ is now the FWHM of the Lorentzian jump distribution.
def proposal2(x):
    return x + 0.5*a*np.tan(np.pi*(np.random.rand() - 0.5))
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In [10]:

Acceptance rate =  0.5177
mean value =  -0.14214280277084368

(x,acceptance_rate) = metro(x0=x0, jump_func=proposal2, likelihood_ratio
print('Acceptance rate = ',acceptance_rate)
print('mean value = ', np.mean(x))
 
plt.figure()
plt.plot(x,'k.',label='Markov chain')
plt.plot(np.array((0,Nx)),np.array((b1,b1)),'c--',label='mode 1')
plt.plot(np.array((0,Nx)),np.array((b2,b2)),'y--',label='mode 2')
plt.title(r'Markov Chain')
plt.xlabel(r'Step')
plt.ylabel(r'$x$')
plt.legend()
plt.show();
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In [11]: # Compare histogram to target distribution P(x)
 
Nbins = 30  # Number of histogram bins
dxhist = 2*sep/Nbins # Bin spacing for histogram
dx = 0.01   # Sample spacing for P(x)
 
plt.figure()
plt.title('Histogram of Markov Chain')
plt.xlabel('$x$')
plt.ylabel('frequency')
plt.hist(x,bins=Nbins, range=(-sep,sep),label='Markov chain')
 
xs = np.arange(-sep,sep,dx)
actual = doublegaussian(xs)
actual *= Nx*dxhist/(np.sum(actual)*dx)
plt.plot(xs,actual,label='Target distribution')
plt.legend()
plt.show();
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