WEEK NINE

July 27, 2009

This week I'm doing the finishing touches on collecting data and then Angela and I will start analyzing it.

Below are TRACE images overlayed with  6-12 keV and 25-50 keV RHESSI contours.

 
 


   




We know the main source of heating is coming from the top of the loop. If this flare does not have a SHTC then what other possible explanations can we find in oder to account for this type of behavior? One idea was purposed by Dick that reconnection occurred in a very dense region. How do you find a dense region of the reconnection? Idea: Look at the cooling times from the temperature average from Detectors 3 and 4. 

 Peaks occur at time intervals 9,15,22, and 25(not to sure).
     Interval 9- 1:58:00- 1:58:20
     Interval 15-2:00:00- 2:00:20
     Interval 22- 2:02:20- 2:02:40
     Interval 25- 2:04:00 - 2:04:20 

Overall light curve that is associated with these intervals:

 








July 28,2009

Today I'm looking at my flare's active region.
    -Does the active region fit the characteristics of a X1.1 Flare?
    -What are the characteristics of an active region and how is it classified.
    -What are the characteristics of a X1 flare vs a M flare?


 
February 26,2004 X1.1 Flare Active Region Stats:
    
     Region number: 564
     Location: N14 W14
     Area: 540 
microhemispheres (μhs)
     Magnetic Type: Beta-Gamma


 
          

I read The Dependence of Large Flare Occurrence on the Magnetic Structure of Sunspots by Ian Sammis, France Tang, and Harold Zirin to help me understand active regions of solar flares.

The study was focused on the largest flare (X1 or greater) in each active region, the largest spot area, and the highest magnetic classification. They accumulated 8 years of data from 1989-1997: 104,475 observations of 2789 regions collected by USAF Solar Optical Observing Network (SOON) and the Mount Wilson Observatory.

 
Fig 2.-Peak flare intensities in W m^-2 each spot as a function of peak in disk fraction, with each magnetic class plotted
separately. Clearly all the big events at upper right occur in δ spots, those classed βγδ by SOON. Regions producing no flares have been omitted. (Sammis)

Looking at the same figure but with  Feb 26, 2004 X1.1 spot group area at 540
μhs and 1.1 x10^-4 Wm^-2 in the cross hairs.
The large black circle is over the most dense region where other Beta-Gamma type flares occur. As you can see from the graph there is a small percentage of a flare of this magnitude occurring in the smaller circle region compared to dense region of Beta-Gamma enclosed by the larger circle.







July 29, 2009

July 30, 2009

Creating  an outline of my presentation using several sources to help me put all the information together to see the bigger picture:


       1. Title Page
   
     2. Brief outline of the discussion
   
    3. General information on flare

    4. Why is this flare unique?
             -discuss hypothesis
                * From a previous study of this flare it was hypothesized that this flare exhibited a Super Hot Thermal Component(SHTC).
                           ** Should I give a brief description of the characteristics of SHTC?
                                  i)Occurs in impulsive flares
                                  ii) temperature decreases while emission increases
                                  iii) SHTC is seen within the lower temperature component
   
Observations


    5.Reuven Ramaty High-Energy Solar Spectroscopic Imager(RHESSI) ** Information gathered from The RHESSI Imaging Concept                                                                                                                              by Hurford,Schmahl,Schwartz....
             Purpose: to gather data of the energy released and particle acceleration in solar flares
                           
                ( The output pulse from each photon detected is amplified,shaped,digitized and passed to the Instrument Data Processing                     Unit (PDPU). )
      
                  

               
              *The role in detectors and data system- to record the time and energy of each photon detected, allowing the modulated                        count rate to be determined as function of rotation angle. The detectors and the modulation collimators enable flare                             spectra and images to be obtained from both xrays and gamma rays.

                     
                Detectors are high -purity germanium crystals, divided into front and rear segments
                         - Front segment- ~1cm thick is sensitive to 3 keV to ~ 200 keV( X-rays)
                         -Back segment- ~ 7 cm thick response to 17 MeV( gamma rays)
                                  *I used front detectors 3-9 for images

                  
        
                Grids- nine bi-grid subcollimators, each consisting of  a pair of widely separated grids in front of the non imaging                                        detectors.
                         - Set of rotating collimators to time modulate the detection of  photon flux
                       
               

                        
      
      

      6. Discuss data gathered from RHESSI
   
                   Images- Pixon Image from time period 1:54:40 energy range 30 -100 keV: the foot point
                                  **Should I show the overlay of the lower energy ranges  as well?

                      Pixon image of the peak and the decay(overlay or just images)

    7.)

       ***Information from The Topology of Magnetic Reconnection in Solar Flares by Angela Colman Des Jardins

   


        Introduce data collected from Solar and Heliospheric/Michelson Doppler Imager (SOHO/MDI): line of sight magnetograms to               obtain the topology using the Magnetic Charge Topology (MCT) model.
    
                     
Describe the MCT model./?
                -MCT  model  assumes the photospheric field can be divided into  individual unipolar regions.
                  
                       1) A point source is located on the poles of  the  photosphere.
                      2) Coronal field lines are then placed  in individual sources that are separated by adjacent regions "in which the                                        normal component of the magnetic field lines is zero."(Des Jardins) Each coronal field line is appointed  to a
flux                                domain (- a volume containg field lines all having the same sources at their end) according to the poles
                       3) Nulls are placed at like pole boundaries with zero magnetic flux
                      4) Separatrix -a surface lying at the interface of two domains.
                      5)The separatrix intersect along separator field lines. A separator is the location reconnection occurs in the 3-D                                 MCT coronal model

         
             Images: Topology with MDI at 00:00:03 and 01:39:03 to see the evolution of the separators.
                                  -topology with RHESSI contour overlay. ** I think I want to show all if it together with TRACE
                                           *impulsive
                                           *peak
                                           *decay


   OR Describe the MCT Model show the before and during flare topology and then show images of the TRACE overlay with topology and then RHESSI contours of 6-12 keV and 25-50 keV overlay. ***killing two birds with one stone.

Then I should talk a little bit about TRACE./?


            
    8) Spectroscopy

             Discuss the new method to analyze the spectra through the OSPEX GUI.

    Show: Spectra Graph
                   detector 3 and/or 4
                      * non thermal plus thermal fit (impulsive)
                      * two-thermal fit peak/decay phase

       Show the overall graph of the spectra information
                   average of thermal and emission measure

          show graph with temperature in MK

9) Results
     
RHESSI: Short duration of nonthermal emission causes a short impulsive phase (image of foot point). From the images we can see we have a high energy loop top source.

MCT: Topology shows the separators are not twisted or kinked. Simple coronal magnetic field

TRACE: Less stress in coronal magnetic field.
the MCT model is aligned with the TRACE data.

Spectroscopy: See similar characteristics as if we did have a SHTC as th
                           
  i)Occurs in impulsive flares YES!
                                  ii) temperature decreases while emission increases YES!
                                  iii) SHTC is seen within the lower temperature component- this is not the case for this flare
         
                The two thermal fit was the best choice compared to the one thermal fit but the lower temperature didn't exhibit the characteristics needed to be a SHTC.(Discuss more)

        
   10) Conclusion

          Restate Problem: What makes this flare different?

                   Due to recent development of new methods on how to analyze this flare through RHESSI imaging and spectroscopy you can see that it does not have a SHTC but its a very thermal flare.

Several ideas on why its is different/thermal:

             look at the active region area, peak flare intensity, and magnetic classification.
           
                    
Area: 540  microhemispheres (μhs)
               Magnetic Type: Beta-Gamma
               Peak Flare intensity:
1.1 x10^-4 Wm^-2 (X1.1)
Show the study:
The Dependence of Large Flare Occurrence on the Magnetic Structure of Sunspots by Ian Sammis, France Tang, and Harold Zirin

The study was focused on the largest flare (X1 or greater) in each active region, the largest spot area, and the highest magnetic classification. They accumulated 8 years of data from 1989-1997: 104,475 observations of 2789 regions collected by USAF Solar Optical Observing Network (SOON) and the Mount Wilson Observatory.

Show image of the location of my flare on the graph

             Looking at the same figure but with  Feb 26, 2004 X1.1 spot group area at 540μhs and 1.1 x10^-4 Wm^-2 in the cross hairs. The large black circle is over the most dense region where other Beta-Gamma type flares occur. As you can see from the graph there is a small percentage of a flare of this magnitude occurring in the smaller circle region compared to the dense region of Beta-Gamma enclosed by the larger circle.

                                 
 FIN!...I HOPE.