

Heating and Dynamics of Two Flare Loop Systems Observed by AIA and EIS

Ying Li^{1,2}, Jiong Qiu², Mingde Ding¹

¹Nanjing University ²Montana State University

July 9 2013

Bozeman MT

July 2013

AAS 44th SPD Meeting

Contents

- Background
- Method
- Results
- Summary

Bozeman Mi

July 2013

AAS 44th SPD Meeting

Background

Bozeman MT

Flare heating issue

Method

the zero-dimensional "Enthalpy-Based Thermal Evolution of Loops" model (EBTEL; Klimchuk et al. 2008, Cargill et al. 2012)

$$\frac{dn}{dt} = -\frac{2c_2}{5k_BT} \left[\frac{F_c}{(L)} + c_1 n^2 \Lambda(T) \right]$$

$$c_1 = \frac{\mathcal{R}_t}{\mathcal{R}_c}$$

$$\frac{dp}{dt} = \frac{2}{3} \left[Q(t) - (1+c_1) n^2 \Lambda(T) \right]$$

Bozeman MT

July 2013

a C4.7 flare on 2011 Feb. 13 in AR 11158

AIA imaging data EIS spectroscopic data

identify two flare loop systems treated as 49 individual loops

each footpoint area: 4" by 4" AIA pixel size: 0.6" by 0.6"

Doppler velocity & UV light curve at footpoint patches

synthetic VS observed EUV fluxes

synthetic VS observed EUV intensities

synthetic VS observed <u>EUV velocities</u>

July 2013

Summary

The two loop systems show quite different heating and dynamics (2nd loop system: <u>continuous heating</u> and <u>long-lasting blueshifts</u>).

The comparisons between model and observations are different in these two loop systems. (may exist different heating mechanisms)

The prominent discrepancies between model and observations in the 2nd loop system may be caused by: (1) non-uniform heating; (2) exist unresolved fine flare strands.

0D EBTEL model: although with simplified assumptions, <u>fast speed & few parameters</u>

be valid to constrain the flare heating model & provide reference for 1D models.

Spectroscopic diagnostics: determine the free parameters in the model; examine the assumptions made in the model,

Thanks for your attention! Thank the meeting organizers!

Bozensan MT

July 2013

AAS 44th SPD Meeting