

On the Nature of the EUV Late Phase of Solar Flares

Ying Li

Collaborators: Mingde Ding, Yang Guo, Yu Dai

Nanjing University, China

June 2 2014

Boston My

June 2014

Contents

- Background
- Method
- Results
- Summary

PM clotsog

June 2014

Background

Boston My

The EUV Late Phase of Solar Flares

June 2014

Background

The EUV late phase emission comes from **the higher and larger loop systems (late phase loops)** rather than the main flaring loops.

Two physical explanations (mechanisms):

 (1) an additional heating in the late phase loops; (Woods et al. 2011; Hock et al. 2012; Dai et al. 2013; Sun et al. 2013)
(2) the long-lasting cooling of the late phase loops. (Liu et al. 2013; Sun et al. 2013)

Some questions ----- what we investigate in this work

- What roles do these two mechanisms play in the EUV late phase?
- Why does the EUV late phase show up in the warm coronal emissions?
- What does the magnetic configuration of the EUV late phase appear?

Method

the zero-dimensional "Enthalpy-Based Thermal Evolution of Loops" model (EBTEL; Klimchuk et al. 2008, Cargill et al. 2012)

Boston My

June 2014

$$\frac{dn}{dt} = -\frac{2c_2}{5k_BT} \left[\frac{F_c}{(L)} + c_1 n^2 \Lambda(T)\right]$$
$$\frac{dp}{dt} = \frac{2}{3} \left[Q(t) - (1+c_1) n^2 \Lambda(T)\right]$$

(Qiu et al. 2012; Li et al. 2012, 2014)

make systematic numerical experiments

based on observations, of course!!

21 loops with lengths continuous distribution

Boston My

the same total heating energy in each loop

Observational hints for the additional heating

Boston My

(1) additional bumps (or long-time enhancement) in the AIA UV 1600 light curve(2) multiple peaks in the AIA EUV emissions

(arcsec

June 2012

Summary

We study the EUV late phase based on numerical experiments & SDO observations.

The role of two mechanisms

- -- long-lasting cooling: definitely exists, sufficient to explain the late phase, preferable
- -- additional heating: may exist in some cases; two hints from observations

Magnetic configuration:

either spine field lines associated with a null point or large-scale magnetic loops in multipolar magnetic fields

dig more from the numerical experiments -

Why in the warm coronal emissions:

- -- Hot emissions are relatively week and overlap with the main phase; (Liu et al. 2013)
- -- <u>Warm channels</u> are appropriate to separate the late phase emission;
- -- Late phase loops are only heated to the warm temperatures;
- -- Cool emissions are weak, and submerged in the bulk coronal emission

non-EUV-late-phase flares

- -- the flare loops with a continuous length distribution
- -- Two sets of flare loops are not heated to the warm temperatures.

Thanks for your attention!

Boston MA

June 2014