

Spectroscopic Diagnostics of **Chromospheric** Evaporation *Using IRIS and Hinode/EIS*

Ying Li (李瑛) M. D. Ding & J. Qiu

SCHOOL OF ASTRONOMY AND SPACE SCIENCE NANJING UNIVERSITY

May 31, 2017

Joint Hinode-11/IRIS-8 Science Meeting, May 30 — June 2 @Seattle, WA

Contents

Background (evaporation)

Instruments & Spectra (EIS/EUV, IRIS/UV)

Observations & Results (2 flare events)

Summary & Discussion

Background (1/3)

(Dennis & Schwartz 1989)

Background (2/3)

Background (3/3)

Some problems (discrepancies between observations and models) before/in EIS (pre-IRIS) era

— dominant stationary component in high T (≥10 MK) lines 10000 [THE PROPERTY COMPONENT IN THE PROPERTY COMPONENT IN THE PROPERTY OF THE PROPE

(Ding et al. 1996; Milligan & Dennis 2009) explanations:

(1) moving perpendicular to the line-of-sight (Falewicz 2009)

(2) from the top of the flare loop (Doschek & Warren 2005)

(3) multi-strand flare loop model (Brosius 2013)

(4) instrument not sensitive (Doschek & Warren 2005)

solved in the IRIS era?

 high temperature downflows reversal temperature from blueshift to redshift

(Milligan & Dennis 2009)

 ≤ 1 MK (Kamio et al. 2005)

2 MK (Milligan 2008)

2.5-5 MK (Li & Ding 2011)

rather high energy deposition site?? (further investigated in numerical modeling???)

Instruments

Hinode/EIS (since 2006) Extreme-ultraviolet Imaging Spectrometer

wavelength: 170–210 Å & 250–290 Å (EUV) spectral line: log T = 4.7–7.2 K (coronal & flaring lines) resolution: ~1", ~sec to min, 0.022 Å/pixel mode: raster scan & sit-and-stare

IRIS (since 2013)

Interface Region Imaging Spectrograph

wavelength: ~1400 Å & ~2800 Å (FUV/NUV) <u>spectral line:</u> log T = 3.7–7.0 K (chromospheric lines) <u>resolution:</u> ~0.167", ~sec to min, 0.025 Å/pixel <u>mode:</u> raster scan & sit-and-stare (SJI)

Spectral Lines

	. 9 .	
Ion	Wavelength $(Å)$	$\log T_{max}$ (K)
He II	256.32	4.7
Fe VIII	185.21	5.8
Fe X	184.54	6.0
Fe XII	195.12	6.1
Fe XIII	202.04	6.2
Fe XIV	274.20	6.3
${ m Fe}~{ m XV}$	284.16	6.3
Fe XVI	262.98	6.4
Ca XVII	192.82	6.7
Fe XXIII	263.76	7.1
Fe XXIV	192.03	7.2

Wavelength (Å) $\log T_{max}$ (K) Ion Mg II h 2803.54.0Mg II k 2796.44.0Сп 1334.54.3Сп 1335.74.3Si iv 1402.84.81354.17.0Fe xxi

from IRIS (+EIS for the 2nd flare event)

from EIS

(for the 1st flare event)

the 1st flare event in the EIS (pre-IRIS) era

Li & Ding, 2011, ApJ, 727, 98

Observations (1/2) — a C4.2 flare on 2007-01-16

three points at the flare ribbons with different magnetic polarities

-550

-600

-500

X (arcsecs)

-450

-400

SOT/Ca II H 16-Jan-2007 02:42:58 UT

SOT/Ca II H 16-Jan-2007 02:32:27 UT

EIS Fe XII 195.12 Doppler velocity (02:32:33-02:41:12 UT)

Observations (2/2) — a C4.2 flare on 2007-01-16

Results (1/2) — point 1 at the positive polarity

Results (2/2) — points 2&3 at the negative polarity

Summary — the 1st flare

(1) The line profiles at one ribbon location with positive polarity are basically blueshifted. — could be a gentle evaporation.
In particular, the blueshifted components dominate over the stationary ones in relatively hot lines. — evaporation region not well resolved?

(2) Both blueshifts and redshifts are observed at negative-polarity ribbons.
 — explosive evaporation;

Particularly, redshifts are visible in the lines of relatively high temperatures (up to 2.5–5.0 MK). — rather high energy deposition site? (or warm rain?)

(3) Flaring ribbons with different magnetic polarities show **different types of chromospheric evaporation**.

— The heating mechanisms and atmospheric conditions may vary at different locations.

the 2nd flare event in the IRIS era (with EIS)

Li et al., 2015, ApJ, 811, 7

Observations (1/2) — an X1.0 flare on 2014-03-29

GOES 1-8 light curve

Observations (2/2) — an X1.0 flare on 2014-03-29

Results (1/4) — profiles of hot (≥10 MK) lines (IRIS vs. EIS)

Results (2/4) — spatio-temporal variation (IRIS vs. EIS)

IRIS Fe XXI & Si IV

Results (3/4) — temperature dependence (IRIS + EIS)

Results (4/4) — profiles of cool lines (from IRIS)

IRIS C II & Mg II

singly peaked & red asymmetric at the flare ribbon

Summary — the 2nd flare

Using the high-resolution observations from IRIS:

- (1) We find that the hot Fe XXI line (~10 MK) is entirely blueshifted at the flare ribbon, which well matches the prediction of evaporation model.
- (2) **The blueshifts are cospatial and coincident with separating ribbons**, suggesting that reconnection/evaporation proceeds well into the decay phase of the flare.
- (3) Different ribbon locations show **different types of evaporation**, and there is **a conversion from gentle to explosive evaporation** as flare evolves.

Summary for the two flare events

chromospheric evaporation & condensation — dynamics at the flare ribbons

event	GOES class	evaporation type	blueshifts (hot lines)	redshifts (cool lines)	flow reversal temperature	
1st flare in EIS era	C4.2	gentle & explosive (x)	dominant components (e.g.,Fe XXIII)	entirely redshifted (e.g., He II)	2.5–5.0 or ~1 MK	still going on?
2nd flare in IRIS era	X1.0	gentle & explosive (x, t)	entirely blueshifted (Fe XXI)	red asymmetry (C II & Mg II)	~1 MK	

also reported by many other nice studies...

Perspectives in Diagnosing Chromospheric Evaporation ("pros and cons" of EIS & IRIS)

EIS

con: relatively low spatial resolution

pro: multiple spectral lines covering a wide T range

—> temperature dependence (energy deposition site)

IRIS

con: few hot spectral lines

pro: multiple cool lines (formed in the chromosphere) in particular, high spatial and temporal resolution

-> spatio-temporal variation & chromospheric condensation

EIS + IRIS + modeling

—> help study flare dynamics and further flare heating (function, mechanisms,...)

Thanks for your attention!