Radiative Hydrodynamic Modeling of the Lyman-alpha Line in Solar Flares

Ying Li (李瑛)¹ & Jie Hong (洪杰)²

¹ Purple Mountain Observatory ² Nanjing University

2019.1.18

OUTLINE

- Introduction
- Modeling
- Results
- Summary

Introduction

The Lyman-alpha (Lyα) line at 121.6 nm is formed in the Sun's chromosphere and transition region in quite-Sun region.

flare observations in Ly α

- imaging: TRACE, VAULT, ...
- spectral: SDO/EVE, SORCE/SOLSTICE, OSO/LPSP, ...
- irradiance: GOES/EUVS, PROBA2/LYRA, ...

relatively rare!!

Introduction

TRACE observations: images & light curves

The majority of the $Ly\alpha$ emission originates from the flare footpoints, which are co-spatial with the HXR sources in general.

Introduction

(Milligan et al. 2016)

SDO/EVE & GOES/EUVS: light curves (full-disk)

The Ly α emission peaks earlier than the GOES soft X-ray flux. ("Neupert" effect)

SORCE/SOLSTICE: spectral observation

Pre-flare Impulsive phase

Direction of scan

1225

1220

1215

Wavelength (Å)

1230

These might be used to compare with the future high-resolution observations.

RADYN simulation: Ly α profiles

Non-equilibrium effects and PRD effects are important, especially the former.

(Brown et al. 2018)

Our radiative hydrodynamical modeling from RADYN: non-equilibrium + PRD effects

try to understand $Ly\alpha$ characteristics in flaring conditions, such as formation height, line profile evolution, etc.

help interpret the future observations of ASO-S/LST/SDI

RADYN

- non-LTE radiative hydrodynamics code
- 1D plane-parallel atmosphere
- with an adaptive grid

code papers:

Carlsson, M., & Stein, R. F. 1992, ApJL, 397, L59
Carlsson, M., & Stein, R. F. 1995, ApJL, 440, L29
Carlsson, M., & Stein, R. F. 1997, ApJ, 481, 500
Carlsson, M., & Stein, R. F. 2002, ApJ, 572, 626
Abbett, W. P., & Hawley, S. L. 1999, ApJ, 521, 906
Allred, J. C., Hawley, S. L., Abbett, W. P., & Carlsson, M. 2005, ApJ, 630, 573
Allred, J. C., Hawley, S. L., Abbett, W. P., & Carlsson, M. 2006, ApJ, 644, 484
Allred, J. C., Kowalski, A. F., & Carlsson, M. 2015, ApJ, 809, 104

RADYN simulations

Flares	F _{peak} (erg cm ⁻² s ⁻¹)	<i>E</i> c (keV)	δ	Label
weak	10 ¹⁰	25	3	F10_25_3
moderate	10 ¹¹	25	3	F11_25_3
strong	3×10 ¹¹	25	3	3F11_25_3
thermal (weak)	10 ¹⁰	-	-	F10_thermal

- Quiet-Sun atmosphere (VAL3C), 10 Mm loop
- 20 s heating, triangular shape
- Beam heating: injected at the loop top, F-P treatment
- Thermal heating: uniformly distributed over the uppermost 8 Mm of the loop

F10_25_3 (non-thermal, weak flare)

F11_25_3 (non-thermal, moderate flare)

3F11_25_3 (non-thermal, strong flare)

F10_thermal (thermal, weak flare)

F10_thermal: time evolution (from black to red)

Integrated Ly α light curves in RADYN simulations

(could compare with the future ASO-S/LST/SDI observations)

Summary

	Tau = 1 height of the line center	Asymmetry of the line profiles	Dynamics (line center)
F10_25_3 (weak flare)	1.8 Mm	red	blueshifted (gentle evaporation)
F11_25_3 (moderate flare)	1.8 Mm —> 1.6 Mm	red —> blue	blueshifted —> redshifted (explosive evaporation)
3F11_25_3 (strong flare)	1.8 Mm —> 1.4 Mm	red —> blue —> 2nd red component	blueshifted —> redshifted (explosive evaporation)
F10_thermal (weak flare)	1.8 Mm —> 1.45 Mm (along the wavelength)	a single red peak (entirely redshifted)	dominant redshifts (explosive evaporation)

peak time

More ...

- The Lyα line is capable of indicating dynamics as well as heating mechanisms in flaring loops.
- Further steps: 1) constrain heating function from real flare observations; 2) run multi-loop simulations; 3) compute soft Xray & EUV emissions and compare with GOES & SDO/AIA observations, 4) study the relation between Lyα intensity and plasma temperature/density; ...
- Perspectives: Our Lyα simulations could help interpret the future observations of ASO-S/LST/SDI (with a highest cadence of 3-4 s), particularly combining with ASO-S/HXI (for non-thermal electron beam observations).

Thanks for your attention!