

Spectroscopic Diagnostics of Chromospheric Evaporation *from IRIS*

Ying Li (李瑛)

PURPLE MOUNTAIN OBSERVATORY NANJING, CHINA

May 9, 2019

2nd China-Europe Solar Physics Meeting, 6 — 10 May 2019 @ Hvar, Croatia

Outline

Background (chromospheric evaporation)

Instrument & Spectra (IRIS & UV lines)

Observations & Results (3 flare events)

Summary & Discussion

Background

(Dennis & Schwartz 1989)

Background

Two types of evaporation

(Fisher et al. 1985a,b,c)

— **explosive evaporation**: blueshifts & redshifts (e.g., Milligan et al. 2006a)

- gentle evaporation: only blueshifts detected *(e.g., Milligan et al. 2006b)*
- threshold of electron flux
 ~10¹⁰ ergs cm⁻² s⁻¹ (Fisher et al. 1985a)

Conversion from explosive to gentle evaporation

(Brosius 2009)

Background

	Flare	Date	Cadence	Blueshifts	5	Redshifts	References
Studies from IRIS	Class		(s)	(Evaporat	tion)	(Condensation)	_
	C1.6	2014-04-19	31	Fe xxi		Si IV, C II, Mg II	Tian et al. (2014)
	C1.9	2014 - 11 - 19	9.5	-		Si IV, C II, Mg II	Warren et al. (2016)
	C3.1	2014-03-15	16.5	Fe xxi		Si IV, C II	Brosius & Inglis (2017)
wholly blueshifted	C3.1	2015 - 10 - 16	6	-		Si iv	Zhang et al. $(2016b)$
	C4.2	2015 - 10 - 16	9.4	Fe XXI		Si iv	Zhang et al. (2016a)
Fe XXI line profile	C6.5	2014-02-03	75	Fe XXI		-	Polito et al. (2015)
(well consistent with	M1.0	2014-06-12	21	Fe XXI		Си	Sadykov et al. (2015, 2016)
theoretical models)	M1.1	2014-09-06	9.5	Fe XXI		Si iv	Tian et al. (2015)
theoretical models)	M1.6	2015-03-12	5.2	Fe xxi		Si IV, Mg II	Tian & Chen (2018)
				Fe xxi		Si iv	Brannon (2016)
	M1.8	2014-02-13	42	-		Mg II	Kerr et al. (2015)
	M2.3	2014-11-09	37	Fe xxi		Si IV, C II, Mg II	Li et al. (2017b)
	M3.7	2017-09-09	9.4	Fe xxi		Si IV, C II, Mg II	Brosius & Inglis (2018)
explosive evaporation	M7.1	2014 - 10 - 27	16.2	Fe xxi		Si iv	Li et al. (2017a, 2018)
observed in general	M7.3	2014-04-18	9.4	Fe xxi		Si iv, O iv, C i	Brosius & Daw (2015)
observed in general				-		Si iv	Brannon et al. (2015)
(rare gentle evaporation)	X1.0	2014-03-29	75	Fe xxi		Si IV, C II, Mg II	Battaglia et al. (2015)
				Fe xxi		Si IV, C II, Mg II	Li et al. $(2015b)$
				Fe xxi		-	Young et al. (2015)
				-		Fe II	Kowalski et al. (2017)
	X1.6	2014-09-10	9.4	Fe xxi		Si iv	Tian et al. (2015)
line Profiles of				Fe xxi		Mg II	Graham & Cauzzi (2015)
Si IV C II & Ma II				Fe XXI		-	Dudík et al. (2016)
SITV, CIT & Mg II				Fe XXI		С і	Li et al. $(2015a)$
heating mechanisms??	X1.6	2014-10-22	131	Fe XXI		С і	Li et al. $(2015a)$
-				Fe XXI		Si iv	Lee et al. (2017)
	X2.0	2014-10-27	26	Fe XXI		Si iv	Polito et al. (2016)

Instrument & Spectra

IRIS (Interface Region Imaging Spectrograph)

<u>wavelength:</u> ~1400 Å & ~2800 Å (FUV/NUV) <u>spectral line:</u> log T = 3.7–7.0 K (chromos., TR, coronal lines) <u>resolution:</u> ~0.33", ~ 2 sec to min, 0.025 Å/pixel <u>mode:</u> raster scan & sit-and-stare (also slit jaw images)

Ion	Wavelength (Å)	$\log T_{max}$ (K)
Mg II h	2803.5	4.0
Mg 11 k	2796.4	4.0
Сп	1334.5	4.3
Сп	1335.7	4.3
Si iv	1402.8	4.8
Fe xxi	1354.1	7.0

- moment analysis
- bisector method

 Gaussian fitting (single/multiple)

Observations — an X1.0 flare on 2014-03-29

GOES 1-8 light curve

Results — profiles of hot (≥10 MK) lines (IRIS vs. EIS)

Results — profiles of cool lines from TR & chromosphere

Results — a C1.6 flare on 2015-12-19

Results — a B1.6 flare on 2016-12-06

Summary & Discussion

- In IRIS flares, wholly blueshifted Fe XXI line profile: more consistent with the theoretical evaporation models; suggest that the high spatial resolution of IRIS may resolve the evaporation flows (lots of references).
- Gentle evaporation has been reported, for the first time, by using IRIS data; bring some new insights into chromospheric evaporation in the IRIS era (*Li et al. 2019*).
- **Different evaporation signatures** have been detected in the cool Si IV, C II, & Mg II lines: redshifted / blueshifted (*Li et al. 2019*).
- Shapes of Si IV (also C II & Mg II) line profiles: seem to be related to the nonthermal emission, which may provide some implications on flare heating mechanisms (Yu, Li, Ding et al. 2019, in preparation).
- using radiative hydrodynamic simulations to study the relationship of Si IV (and also C II & Mg II) line profiles with nonthermal & thermal heating models (Hong, Li, Ding et al. 2019, in preparation).

Thanks for your attention!