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ABSTRACT

The Multi-Order Solar EUV Spectrograph (MOSES ) is a high-resolution, slitless imaging spectrometer that will
observe the Sun in the extreme ultraviolet near 304 Å. MOSES will fly on a NASA sounding rocket launch in
spring 2004. The instrument records spatial and spectral information into images at three spectral orders. To
recover the source spectrum an ill-posed inversion must be performed on these data. We will explore two of the
techniques by which this may be accomplished: Fourier backprojection and Pixons, constrained by the spatially
integrated spectrum of the Sun. Both methods produce good results, including doppler shifts measured to 1

3 -pixel
accuracy. The Pixon code better reproduces the line widths.
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1. INTRODUCTION

Fast Imaging Spectroscopy (FIS) is a fundamentally powerful observational technique, allowing measurement of
two of three pieces of information one can know about the photons coming from a source over a full 2-D field
of view. Only the polarization remains unknown in this approach. It is a key technology in understanding the
physics of a complicated evolving source, such as the solar atmosphere. The achievement of solar fast imaging
spectroscopy has been realized in the realm of visible wavelengths for a number of years, via arrangements of
optical narrowband tunable filters (see references for examples).1, 2

In the Extreme UltraViolet (EUV) FIS has remained elusive, largely due to the difficulty of fabricating
optics in this wavelength regime. Imaging spectroscopy in EUV has been achieved by raster scanning a slit
across the field of view, as in the case of the Coronal Diagnostic Spectrometer (CDS) aboard the Solar and
Heliospheric Observatory (SOHO) spacecraft.3 Complications arise in the interpretation of the data due to the
non-cotemporal nature of the spectra. Indeed, conventional FIS devices can suffer from the same problem for
phenomena on time-scales short compared to the time required to build up the image cube.4 In the case of raster
scanning the problem arises from spectra which are not cotemporal with those taken at other spatial locations.
In conventional visible light FIS, such as tunable Fabry-Perot filter designs, the problem arises from spectra that
are not cotemporal in different parts of the spectrum. The limitation in either case is the scanning speed (either
spatial or spectral). A solution is to “make it faster”, if that is possible.

By contrast, MOSES uses slitless multi-order spectroscopy. In this approach all data are taken simultane-
ously over the whole field of view. There is no scanning, either spatially or spectrally, and hence no confusion of
temporal evolution with spatial or spectral variation. However, MOSES must overcome the sparse sampling of
information inherent in the instrument. In the following sections we will briefly discuss the instrument (§2) and
the inversion problem it presents (§3). We then move on to a description of two of the inversion techniques cur-
rently under study, Fourier backprojection (§3.1) and Pixons (§3.2), and the results of trial inversions performed
on test data from the SERTS-95 experiment.5, 6
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2. INSTRUMENT OPERATING PRINCIPLE

The design of the MOSES instrument is covered in more detail in a paper by Kankelborg and Thomas.7 We will
here only summarize the operating principle of the instrument. The interested reader is referred to that paper
for more information. Parallel developments in slitless spectroscopy are being pursued by several other research
groups in the visible regime.8–10

The MOSES instrument obtains three images over the field of view, in a narrow passband about the He ii
303.8 Å emission line. These three images correspond to spectral orders n = −1, 0, +1. The grating has dispersion
only in one direction, defined as the x axis. Since there is no slit, each image is an overlapping series of images
from the spectral lines in the passband, in the case of MOSES only two: He ii λ 303.8 and Si xi λ 303.3. Each
slice along the y axis will be independent of the others. To simplify the analysis conceptually and in practice we
consider a fixed value of y = y0 and think of the data as 3 1-D intensity images. The Sun is an image “cube”, a
2-D image which is a function of (x, λ). The data are functions of a single coordinate (x + nλ), where x and λ
are in pixel units. The mapping relating I(x, λ) to In(x+nλ) is identically analogous to tomography of a hybrid
“object” in spatio-spectral coordinates along three directions at (−45◦, 0◦, 45◦) (figure 1). Analysis of the data
can be carried out by forward-modeling or inversion to recover the image “cube” representing the part of the
Sun which fits in our field of view and passband. This paper discusses inversion by two distinct methods, fourier
backprojection and Pixon reconstruction.
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Figure 1. A multi-order slitless spectrograph is equivalent to tomography of an object in (x, λ) space from several different
“viewing angles”.

3. INVERSION OF MOSES DATA

Inverting the data functions In to recover the image cube I is clearly an ill-posed problem. The data functions
represent 3N pieces of information while the cube contains (approximately) NM , where N and M are the
number of x and λ pixels respectively. As a result there are an infinite number of cubes which can accomodate
the data. Compounding this problem, the data functions do not sample precisely the same sections of the cube.
As figure 1 shows, some sections are sampled by only 1 or 2 lines of sight.

We deal with these issues by taking advantage of prior information and careful instrument design choices. As
shown by Kankelborg and Thomas,7 the MOSES nullspace is filled by things which contain negative intensity.
The instrument passband has been chosen to be narrow enough that only two spectral lines are contained therein.



Because the passband is sparse many potential cubes contain nullspace elements with negative intensities in places
where there are very few photons. These can be eliminated by positivity constraints. To deal with the effects of
sampling at the edges, we only attempt to reconstruct the part of the cube sampled by two or more orders. The
design of the instrument further diminishes the effect of this ambiguity by making the x direction much longer
than the λ direction (N À M). MOSES has N = 2048 x-pixels but only M ∼ 64 λ-pixels.

We also have a great deal of information about the spectral lines in our passband. Prior experiments have
shown that these lines have Gaussian profiles,11 established their average integrated linewidths, and measured
the separation of the line centers.5 With simulated MOSES data, we have found it possible to locate the line
center by cross-correlation of the three observed orders. For the present numerical simulations, we implement
this complex prior knowledge by assuming that we know the integrated spectrum or “infinite” order projection
(the line-of-sight looking into the cube from the side, at 90◦). For the purposes of this study we have used the
actual ∞ order from our SERTS-95 test data. The ∞ order data are noised just like the “observed” data before
passing to the inversion procedure. We plan to investigate systematically the sensitivity of the inversion to the
∞ order in a future study.

Other common heuristics, such as local smoothness and Maximum Entropy, are available but have not been
used explicitly (some of them are inherent in the Pixon method, see §3.2). We can also construct heuristic
functions encapsulating the physics of line formation if we wish.12 In the present implementation we have chosen
not to add this layer of complexity.

3.1. Fourier Backprojection

The Fourier backprojection method treats the inversion as a traditional tomography problem. All measurements
during the inversion are in pixel units and there is no indication at any point that one axis is a λ axis rather
than a y axis. The reconstruction makes use of the Fourier Slice Theorem13 and a positivity constraint.

By the Fourier Slice Theorem, the Fourier transforms of the data functions are slices of the Fourier transform
of the cube (see figure 2). The data are transformed and placed in their slices in a blank Fourier transform (the
∞ order is padded with zeros to make the transform square). This is inverse transformed back to real space.
Because the Fourier transform was undersampled this results in many negative pixels in the resulting image.
Negative pixels are zeroed in coordinate space and the non-negative image is tranformed back into Fourier space.
The new transform has non-zero elements in the wedges (see figure 2) that previously were not populated by
data. It also has altered values for the data functions. These slices are reloaded with the correct (measured)
values. We now transform back to real space and iterate this procedure until the resulting image in real space
has negligible negative intensity (negligible is defined by the convergence criterion

∑
(I < 0) ≤

√∑
I).

Figures 3 and 4 show the results of a trial inversion performed with the backprojection method. The algorithm
assures that the fit to the data is essentially perfect (χ2 ∼ 0). The plot in figure 4 shows the 1st, 2nd, and 3rd
quartiles of the He ii line profile. The differences (mean and RMS) between the true and reconstructed data are
summarized in table 4.

3.2. Pixon Inversion

Pixon reconstruction is a powerful Bayesian technique for restoring or reconstructing complexly encoded image
data. The basic ideas behind the technique and its use are covered in a variety of references.14–19 The technique
relies on ideas from information theory. The image model with minimal information content is best. One tries
to specify the image using the smallest possible number of parameters. In the Pixon approach one allows the
image model to change during the reconstruction while attempting to minimize both the goodness-of-fit (GOF)
and the information content of the image (quantified as the number of Pixons). In this regard the Pixon prior
is very similar to Maximum Entropy.

One common image model, which we use for MOSES reconstructions, is a pseudoimage/Pixon-map pair with
fuzzy Pixons. In practice one specifies a set of Pixons with which to model the image. This set is not the
optimal set of Pixons for a generic image; it’s selection is driven by the kind of image one expects to find. The
reconstruction only approaches the ideal of minimal information content as a result of the limited selection of
Pixons in the basis set. The image is a “convolution” of the pseudoimage with the Pixon map, I = M⊗P. The
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Figure 2. The Fourier space representation of a spectral cube. The dark lines are measured by MOSES or constructed
from prior knowledge. The shaded wedges are constrained by the requirement of non-negativity in real space.

“⊗” operator is not a true convolution, but very similar. The Pixon map specifies the fuzzy Pixon basis function
to use at a given pseudoimage position. The fuzzy Pixons are normalized shape functions (convolution kernels)
which give the size scale and shape of the information content in the image at that place. The pseudoimage
intensity at each point is multiplied by the appropriate shape function, which spreads this intensity out over
some area. Both the pseudoimage and Pixon map are allowed to vary in order to accomplish the twin goals
of minimizing information and maximizing fidelity to the measured data functions. The pseudoimage is easily
chosen to be strictly non-negative, as are the Pixon basis functions. The convolution process which generates
the image from the pseudoimage and the Pixon map enforces both smoothness and positivity.

We have performed a reconstruction with this Pixon method. The initial Pixon map is chosen to consist
entirely of the largest size Pixon. The pseudoimage is initialized with two lines at approximately the locations of
the He ii and Si xi line. The pseudoimage and Pixon map are optimized independently of each other to reduce
the GOF (we have chosen χ2) criterion. When the GOF has been minimized over P with M held constant we
allow the next smallest Pixon shape function to be put into the map and then minimize χ2 over M with P held
constant. At the end of this optimization we return to minimizing over P with M constant. At the end of each
such iteration we reset the entire Pixon map to the largest size and allow one smaller size from the Pixon basis
than was allowed in the last iteration. The procedure terminates on the P optimization after the last Pixon in
the basis has been added to the available Pixons.

Our Pixon basis for this reconstruction is shown in figure 5. The Pixons are elliptical truncated Gaussians
with major axis aligned with the λ direction. The shape function is defined by

S(x, λ) =
R(x, λ)∫

R(x, λ)dxdλ
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Figure 3. Original SERTS-95 data vs. the Fourier backprojection reconstruction. The SERTS-95 data have been rescaled
to correspond to anticipated MOSES count rates.

where

R(x, λ) = exp
(
− (x− cx)2

2r2
s

− (λ− cλ)2

2(rs + 3)2

)

The constants (cx, cλ) and rs define the center and minor axis scale of each Pixon. The Pixons all have a common
center. The largest Pixon in figure 5 is circular rather than elliptical. This Pixon is intended to cover large areas
of nearly uniform intensity. These will usually be nearly zero intensity regions for solar images in this passband
and don’t necessarily have any particular shape. The other Pixons are intended to cover the spectral lines, which
are believed to be gaussian in the wavelength axis.

This Pixon basis is far from optimal. There are not enough Pixons in it and no Pixons which are longer in
the x direction. Such Pixons might be thought appropriate for fitting sections of spectral lines where the width
is nearly constant. Furthermore this basis is incomplete, in that it cannot produce a generic image because it
contains no Pixon which is the size of one pixel. These problems with the basis are evident in the comparison
of the data with the reconstruction which is presented in figure 6. The reduced χ2 for each of the orders
(+,−, 0,∞) are (1.07, 1.05, 1.25, 4.54). Clearly the χ2 is not yet optimal. The quartiles plot for the central 225
pixels (equivalent to the plot for the Fourier backprojection method) is presented in figure 7. Table 4 summarizes
the success of both Fourier backprojection and Pixons in reconstructing line profile parameters.

4. DISCUSSION

We have presented two methods for reconstructing an image cube from MOSES data. Our Pixon implementation
is still very new and incomplete. Although work on the Fourier backprojection method has not ceased, it is far
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Figure 4. 1st, 2nd, and 3rd quartiles of the SERTS-95 image and the Fourier backprojection reconstruction.
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Figure 5. The Pixon basis for this reconstruction. The effective minor axis size is given in the lower left corner of each
box. The major axis is 3 pixels larger than this value. The largest Pixon is circular rather than elliptical.
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Figure 6. A comparison of SERTS-95 data (rescaled) with the reconstruction via the Pixon method. The SERTS-95
data has been extended so that it goes to zero smoothly in all directions at the edges.

closer to maturity than the Pixon method.

The methods have different computational and theoretical characteristics. The Fourier method is fast and
provides a “quick-look” data product with roughly the right character. The Pixon method is based on a tech-
nique that has proven powerful and robust in other applications.17–19 We believe Pixons may yield the best
reconstructions possible. This method is slow and may require tuning for the MOSES application, especially in
the choice of Pixon basis.

Cursory inspection of figures 3 and 6 leads to the conclusion that these two methods produce comparable
reconstructions. The quartile plots in particular give us confidence that both methods are generally able to
reproduce the features of the strong He ii line. The general similarity between these two methods should be
taken as validation that the MOSES concept is sound. However, there are detectable differences between the two
reconstructions. To be quantitative we take the quartiles as measures of the line parameters of physical interest,
line center and width. These would allow us to produce, for instance, dopplergrams in He ii and temperature
maps. The errors in line center and line width (based on quartiles) from each inversion method are summarized
in Table 4. Both methods centroid the line profile to ∼ 1

3 pixel, which corresponds to approximately 7mÅ or
7 km/s velocity discrimination. The Fourier backprojection infers a linewidth that is systematically narrow. The
Pixon method yields superior, sub-pixel line width determination.

It is apparent from the reconstructed images (figures 3 and 6) recovers the relatively weak Si xi line accurately.
Perhaps a fully matured Pixon method will allow recovery of Si xi intensity. This would undoubtedly also lead
to improved determination of the He ii line profile, which is likely limited by noise from the unrecovered Si xi.
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Figure 7. Quartiles plot for the Pixon reconstruction similar to figure 4.

Table 1. Differences between true and reconstructed line profile parameters. Line center and linewidth errors are in
pixels. For each parameter, a mean offset and RMS error are given. One MOSES pixel is approximately 20mÅ.

center (median) width (quartiles 1-3)
Algorithm mean RMS mean RMS
Fourier -0.01 0.32 -0.19 0.97
Pixon -0.04 0.36 -0.04 0.59

In summary, our early investigations into the inversion of MOSES data are promising. It appears that we will
be able to use MOSES to make meaningful measurements of velocities in the transition region with resolution
less than 10 km/s. Such measurements will have implications for our understanding of the mechanism producing
the anomalously large He ii intensity in the transition region and the proposed “velocity redistribution” model,
which may explain the discrepancy between data and theories of radiative transfer in the chromosphere and
transition region.11 It remains to be seen whether we will be able to make usable measurements of the Si xi line.
We also hope for improvements in our ability to measure line widths as we refine our reconstruction methods.
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