First Results from the Multi-Order Solar EUV Spectrograph (MOSES) Sounding Rocket

Charles Kankelborg and J. Lewis Fox Physics Department, Montana State University Roger J. Thomas NASA's Goddard Space Flight Center

2006 SPD, Durham, NH

Acknowledgments

The success of MOSES owes much to:

- Roger Thomas and collaborators at GSFC (optical design, optical and EUV testing, multilayers)
- A 3-CCD version of the EIS camera supplied by MSSL
- Marilyn Bruner's flying optical table, developed for SPDE as well as her sage advice.
- Funding: NASA LCAS
- SPARCS team at WSMR

Simultaneous imaging and spectroscopy in EUV

- Many imaging spectroscopy methods (FP filters, FT spectrometer) don't apply in EUV and SXR.
- Multilayer telescopes (MOSES, NIXT, EIT, TRACE) are pure imagers with several lines in the passband.
- Slit spectrometers (SERTS, CDS, SUMER, EUNIS) build up a field of view slowly by rastering.
- The Skylab slitless spectrograph (SO82A) data had many overlapping line images.

Hybrid space analogy

MOSES layout

MOSES Parameters

Optics: $8 \times 8 \text{ cm}$ spherical grating and flat mirror Coatings: B_4C/Mg_2Si multilayer, $R \sim 0.4$ Lines: He II 303.8 Å, Si XI 303.3 Å Detectors: three 2048×1024 , rear-illuminated CCDs at m = -1, 0, +1Pixel size: 0.59'', 29 mÅ, 29 km/s

Data analysis plan

1. Reduction

- (a) Dark subtraction, flat fields
- (b) Coregistration of m = -1, 0, +1 to 0.2 pixel (6 km/s)
- (c) Removal of drift
- 2. Scientific analysis
- (a) Low hanging fruit (today's talk)
 - i. Spectral signatures in difference between orders
- ii. Centroid features; "parallax" ⇒ doppler shift
 (b) Inversions
 - i. Compensate for PSF, different in each order!
 - ii. Local and global inversions

Launch 2006 Feb 8

- Launch 2006 Feb 8, 18:44 UT
- $\bullet \sim 5$ minutes of observation above 160 km
- Apogee 260 km
- \bullet 27 science exposures, $\sim 10\,{\rm s}$ cadence
- Recovered intact

(GOES/SXI (movie credit: Sam Freeland))

Context—EIT 171 Å

- "Wishbone" structure
- AR loops near disk center

m=0 images

- 27 exposures (0.25 s 24 s), 5 min. total, FOV > $1R_{\odot}$
- Quiz: Where are the **Doppler shifts**?

Difference movie: $I_+ - I_0$

- Saturated or missing pixels in orange
- Three features of interest
- Coronal features—"wishbone" (Si XI)

- 20'' grid
- Red shift
- Context of unshifted brighter features
- Loop flow?

Feature 1

- Bifurcation into two lobes
- Red shift
- Again, surrounding features are unshifted.

Explosive event (broadening)
Bidirectional jets

17

Feature 3 core

Feature 3 jet

Conclusions

- It works! *MOSES* obtains simultaneous imaging and spectral information over a wide FOV.
 - Quantitative doppler shifts
 - Explosive events
 - Coronal features (Si XI)
- No slit \Rightarrow high count rate \Rightarrow rapid cadence (limited by readout time)
- Much more to do
 - Reconcile PSFs among the 3 orders
 - Inversions \rightarrow a spectrum in every pixel