Noise Modeling using Photon Transfer Curves

Thomas Rust
MOSES Group Meeting
October 31, 2012

$$\langle I \rangle_i = G\eta \langle P \rangle_i + ped$$

$$\sigma_{i}^{2} = \sigma_{SHOT}^{2} + \sigma_{FANO}^{2} + \sigma_{READ}^{2}$$

$$= G^{2} \eta^{2} \langle P \rangle_{i} + G^{2} \eta F + \sigma_{READ}^{2}$$

$$= (G(\langle I \rangle_{i} - ped) + G^{2} F) \eta + \sigma_{READ}^{2}$$

Charge Collection Issues: $\eta \rightarrow \eta_E, \eta_E < \eta$

$$\langle I \rangle_i = G\eta \langle P \rangle_i + ped$$

$$\sigma_i^2 = (G(\langle I \rangle_i - ped) + G^2 F) \eta_E + \sigma_{READ}^2$$

Need to measure σ_{READ}^2 , ped, G, η_E

$$\begin{split} \langle I \rangle_{BOX} &= G \eta \langle P \rangle_{BOX} + ped \\ \sigma_{BOX}^2 &= \left(G \left(\langle I \rangle_{BOX} - ped \right) + G^2 F \right) \eta_E + \sigma_{READ}^2 + \sigma_{FIXED}^2 \\ \sigma_{dI,BOX}^2 &= \left(G \left(\langle I \rangle_{BOX} - ped \right) + G^2 F \right) \eta_E + \sigma_{READ}^2 \\ dI &= \frac{I_2 - I_1}{\sqrt{2}} \end{split}$$

$$\eta_E = \frac{\sigma_{EUV}^2 - \sigma_{READ}^2}{G(\langle I \rangle_{BOX} - ped) + G^2 F} \quad [e-/phot]$$

 $\lambda > 400nm$:

$$\sigma_{RED}^2 = G(\langle I \rangle - ped) + \sigma_{READ}^2$$

$$G = \frac{\sigma_{RED}^2 - \sigma_{READ}^2}{\langle I \rangle - ped} \quad [DN/e-]$$

 σ_{READ}^2 , ped measured from bias images (dark current at room temp)

G is temperature dependent.

Procedure

- Expose CCD's to pulsed 635 nm LED
- Vary exposure level from dark to A/D saturation
- Two images at each exposure level
- Difference same exposure images
- Compute $\sigma_{dI,BOX}^2$, $\langle I \rangle_{BOX}$ for many locations on CCD
- Plot on log-log scale

Results

	1/G [e-/DN]	RMS Read Noise [e-]	Min Full Well [ke-]
m = -1	6.23	13.00	95.7
m = 0	6.40	13.22	99.9
m = +1	6.25	14.08	98.1

TO DO

- Cooled (vacuum) red light photon transfer
- Measure effective quantum yield in EUV
 - → noise model
- PTC Flatfield Connection

Thanks

Pat Lokken
Hans
Jake Plovanic
Charles
Norm
Bo
Larry

References

- Janesick, J. (2001). Scientific Charge-Coupled Devices. SPIE Press.
- Janesick, J. (2007). $DN \rightarrow \lambda$. SPIE Press.