More Interesting Than You Thought: IRIS Observations of Explosive Events

Charles Kankelborg

Abstract

Transition region explosive events (EEs) are characterized by line broadenings (to the blue or red or both) with nonthermal velocity $\sim 100 km/s$. They are widely attributed to reconnection, though their nature is still obscure and some observers have reported rotary motion. The transition region is an excellent laboratory to study reconnection in a solar context, with high emission measure in the reconnection region, a high event rate, and optically thin spectral lines. The Interface Region Imaging Spectrograph (IRIS) has observed many explosive events in Si IV and C II. We describe the substructure of supersonic flows in EEs observed by IRIS, and their morphology as revealed by IRIS slit jaw images.

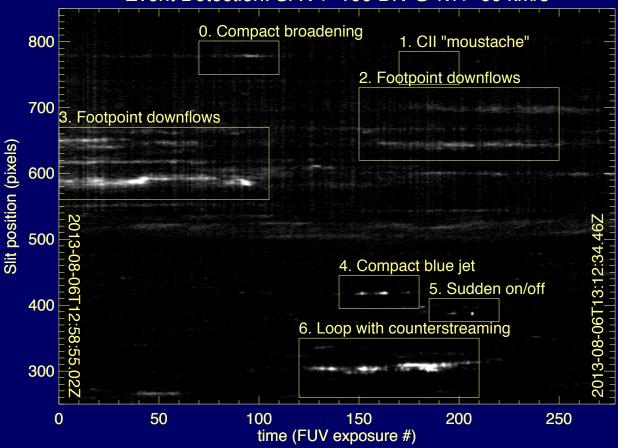
PDF with embedded movies:

http://solar.physics.montana.edu/kankel/EE/

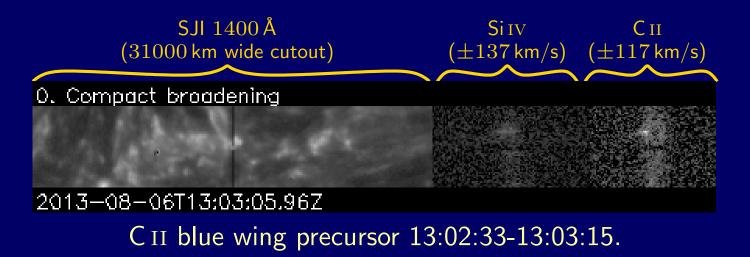
Introduction

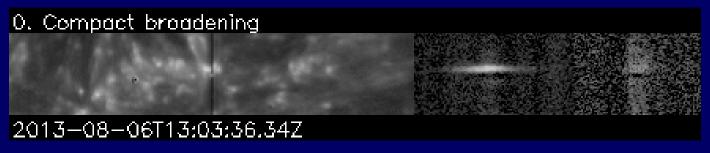
Explosive events are defined observationally as follows:

- 1. Transition region line broadening in excess of sound speed (e.g., $> 40 \, \text{km/s}$ for Si IV).
- 2. Supposed to be small (typ < 5000 km).
- 3. Prominent in Si IV $(63,000 \,\mathrm{K})$ and C IV $(100,000 \,\mathrm{K})$.
- 4. Observed in transition region lines from C II $(20,000\,\mathrm{K})$ to O v $(250,000\,\mathrm{K})$.


Objective: Use IRIS slit jaw imager (SJI) in conjunction with FUV spectra to investigate reconnection in the transition region.

IRIS Data


- 2013-Aug-6 12:58:55-13:12:34 UT
- 2s Exposures, 3s cadence
- FUV (& NUV) spectra
- SJI 1330, 1400, 2796 alternating.
- ullet Data reduction: Level 1 o IRIS_PREP (flats, darks, geometrical correction).


This presentation emphasizes Si IV and C II FUV spectra, and SJI 1400.

Event Detection: Si IV > 100 DN @ Ivl > 60 km/s

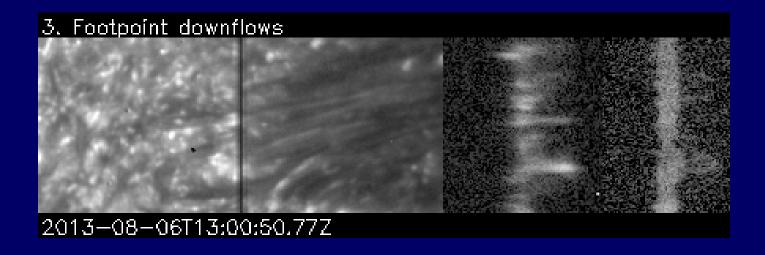
Compact Event

EE in Si IV 13:03:15-13:04:05.

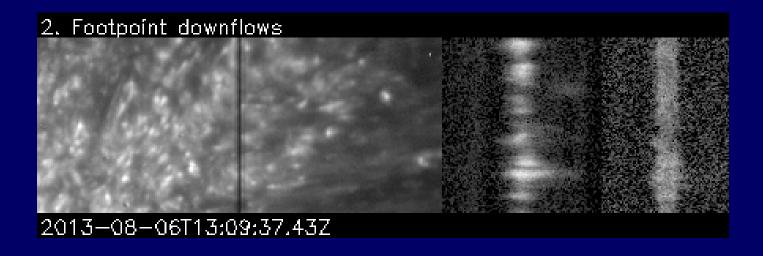
Self-Absorbed CII Event

Compact, mainly C_{II}.
Self-absorbed, no brightening in line core (very low).
Profile is nearly symmetric. Reconnection low in the atmosphere may encounter neutrals.

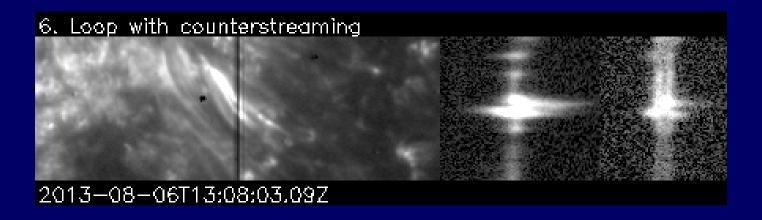
More Compact Events



Predominant blue shift. CII is not self-absorbed.


Two pulses. The second is very fast, lifetime $< 4 \, \mathrm{s}$.

Loop Footpoint Downflows


The red shifted bits are apparently in the foreground. Also some compact events in the vicinity.

More Loop Footpoint Downflows

These satisfy the observational definition of explosive events, including small apparent size on the slit. SJI images show that they are part of extended structures.

Counterstreaming Loop Flows

More loops crossing the slit, this time with bursty flows, alternating red and blue shifts.

Could this be reconnection along a separator field line?

Conclusions

- "Explosive Events" correspond to multiple different phenomena.
- Compact features:
 - Events appear to be localized in height, but occur over a range of heights (CII with or without self absorption, and Si IV).
 - Repetitive pulses observed in compact (few pixel) events, short as $< 4\,\mathrm{s}$
- Extended loops/fibrils:
 - Emission in Si IV, C II
 - Intermittent, recurring downflows at footpoints
 - Rapidly reversing flows in reconnecting loops