
THE TOPOLOGICAL NATURE OF THE PARKER MAGNETOSTATIC THEOREMa)

B. C. Low1

High Altitude Observatory, National Center for Atmospheric Researchb), Boulder,

Colorado, USA

September 03, 2022

The two-plate initial boundary-value problem of Parker is reviewed, treating the re-

laxation of a 3D magnetic field prescribed with an arbitrary topology to a terminal

force-free field in a cold, viscous, electrically perfect fluid-conductor. Anchored by

their foot-points at the perfectly conducting rigid plates, the relaxing field preserves

its topology. The Parker Magnetostatic Theorem states that for most prescribed field

topologies, the terminal field must embed current sheets. The elements of this Theo-

rem are examined to relate this initial boundary-value problem to (i) the variational

problem for a force-free field of a given topology and (ii) the direct construction of a

force-free field in terms of its pair of Euler flux functions. Insights are presented on

the Theorem as the compelling basis of the Parker theory of solar coronal heating.
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I. INTRODUCTION

The fundamental Magnetostatic Theorem of Eugene N. Parker states that a 3D magnetic

field of complex topology, frozen into an electrically perfect fluid-conductor, generally at-

tains force equilibrium by spontaneously embedding infinitesimally thin current-sheets (CSs)

across which the field is tangentially discontinuous. In the absence of resistivity, the discrete

electric current flowing in a magnetic tangential discontinuity (TD), given by Ampere’s law,

arises naturally. Magnetic flux surfaces move as fluid surfaces. In a 3D evolution to equilib-

rium, two flux systems separate in space can readily push an intervening third flux system

completely out of their way to make direct contact at a TD. The crux of the Theorem is

that most equilibrium fields must embed TDs by the nonlinear action of the anisotropic

Lorentz force under the frozen-in condition. That is, equilibria embedding TDs are the rule

rather than the exception. This concept-transforming property was discovered by Parker1

50 years ago. The basis for it and its implications were carefully laid out in a monograph2

with extensive references, hereafter referred to as the monograph.

The Theorem originated in the Parker theory of coronal heating under the condition

of near-perfect electrical conductivity1–6. The adjective near-perfect is taken in the hy-

dromagnetic sense of a large Lundquist number Lη = U0L0

η
in a macroscopic fluid flow of

characteristic speed U0, length scale L0 and electrical resistivity η. Treating the corona as

fully ionized hydrogen at temperature T = 106K dominated by a ∼ 10 G field, the Spitzer

resistivity gives η ∼ 0.5 × 1013 T−3/2 = 5 × 103 cm2 s−1. Setting U0 ∼ 500 km s−1, a

characteristic coronal Alfven speed, we see that the corona behaves like a perfect conduc-

tor with Lη ≥ 1010 down in scale lengths to that of the thermal proton mean-free-path

Lmfp ∼ 100 km. When not disrupted by high energy flares and Corona Mass Ejections,

the low-β corona yields to its ∼ 10 G field and evolves quasi-statically. The evolution is

driven by the heavy photosphere slowly moving at speeds ∼ 0.5 km s−1 compared to the

coronal Alfven speeds ≥ 500 km s−1 at which the corona adjusts dynamically to remain in

its large-scale near-equilibrium state.

Through the thin (104 km ≈ 3× 10−2R�) chromosphere, temperature rises steeply from

∼ 6 × 103K at the photosphere to the million degree temperature in the low corona, as

the near hydrostatic density falls some 8 orders of magnitude. This gravitationally-bound

transition layer is rich with time-dependent radiative and hydromagnetic processes nowadays
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observed with impressive spectral, spatial and temporal resolutions7. We will not treat the

chromosphere, interesting in its own right, except to state that, through it photospheric

magnetic fields extend into the corona, delivering an ever present Poynting flux at a rate

adequate to account for the estimated global loss of 1028 erg s−1 in thermal X-ray from the

corona2,3,8. The essence of the heating problem is concerned with how magnetic energy stored

in the field under high electrical conductivity might nevertheless be resistively dissipated as

a source of heating.

The Theorem makes the point that current sheets form irrepressibly in the coronal field

under the condition Lη >> 1, only to have the condition break down locally wherever

a current sheet thins towards zero width. The thinning sheet then dissipates via mag-

netic reconnection taking place with the otherwise negligible resistivity9,10. The dissipation

locally heats the corona and, by its removal of the current sheet, the high-conductivity

condition Lη >> 1 is locally restored. Under the Theorem, returning the field to the

perfect-conductivity regime merely sets the stage for further formation of current sheets and

their subsequent dissipation. These dissipative events explain the ubiquitous, intermittent,

small-scale nano-flares observed in high-resolution coronal X-ray observations2,3.

The present paper focuses on the Theorem as a basic MHD property while keeping in

mind its fundamental role in coronal heating. Section II presents a constructive analysis of

the two-plate initial boundary-value problem introduced by Parker1, treating the relaxation

of a field to a terminal force-free state in a cold, viscous, perfectly conducting fluid11. A

variational description of the terminal state presents an instructive comparison with the

force-free field as an analytical solution to the nonlinear, coupled PDEs describing a global

pair of Euler flux-functions. The topological properties of the frozen-in fields are central

to the Theorem. In particular, what is meant by most equilibrium fields will be defined

with conceptual precision. Section III presents a concluding discussion, pointing out several

basic implications previously not known or appreciated and offering a view that there is

interesting work to do on the low corona as a quasi-steadily driven, β << 1, Lη >> 1

turbulent hydromagnetic atmosphere.
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II. THE PARKER TWO-PLATE PROBLEM

The two-plate problem seeks a time-dependent solution for a field B in the unbounded

fluid between two parallel, rigid, perfectly-conducting Cartesian boundaries at z = 0, L. The

field is unidirectional, streaming from one plate to the other where the magnetic foot-points

are rigidly anchored. We treat physically the simplest case of a cold, viscous, perfectly

conducting fluid described by

ρ
∂v

∂t
+ ρ (v · ∇) v =

1

4π
(∇×B)×B + ν1∇2v + ν2∇ (∇ · v) , (1)

∂ρ

∂t
+∇ · (ρv) = 0, (2)

∂B

∂t
= ∇× (v ×B) , (3)

in standard notations, subject to the boundary-initial conditions:

z = 0, L, v = 0, Bz = B0 > 0, (4)

R =
(
x2 + y2

)1/2
→∞, v→ 0, B→ B0 = B0ẑ, (5)

t = 0, ρ = ρ0, v = 0, B = Bτ (r), (6)

where r = (x, y, z); ν1 and ν2 are constant coefficients of viscosity; ρ0 is a uniform initial

density; B0 is a uniform field in the z direction, and, Bτ is an arbitrarily prescribed initial

field subject to boundary conditions (4) and (5).

A few comments are in order. Boundary conditions (4) follow from induction equation

(3) under the Maxwell requirement for the tangential component of the electric field E =

−1
c
v × B to vanish at z = 0, L as rigid, perfectly conducting boundaries. Independent of

induction equation (3), viscosity also demands that v = 0 at z = 0, L.

Figure 1 is a sketch of two initial fields, the uninteresting case of a uniform initial field

Bτ ≡ B0 in 0 < z < L and a case of a continuous Bτ (r) in a significantly twisted state.

The former is a trivial solution to the two-plate problem with v ≡ 0. Following Parker’s

original treatment, we limit Bτ to be created from the uniform field B0 in a specific manner.

Starting with B0, relax the rigidity of boundary z = 0. Then, carry out a continuous,

tangential displacement of the magnetic foot-points on z = 0 and spatially continue the

displacement into the interior 0 < z < L, while holding z = L rigid. Taking the foot-point

displacement to be incompressible and spatially bounded in the x and y directions ensures
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FIG. 1. The fields (a) B0 and (b) Bτ (r) described in the text. The sketch (c) of two flux surfaces

pressed into contact through a hole punched into a third intervening flux surface, discussed in

Section II.C.

boundary conditions (4) and (5), respectively. Identify Bτ with the deformed field obtained

and restore z = 0 to rigidity.

Define B = B0 + b and obtain the free magnetic energy

E =
1

8π

∫
0<z<L

[B.B−B0.B0] dV =
1

8π

∫
0<z<L

b.b dV, (7)

where dV = dxdydz. A product term b.B0 in the integrand has no contribution by virtue

of the solenoidal condition ∇ ·b = 0 and boundary condition (4), the latter implying bz = 0

at z = 0, L. Boundary condition (5) in terms of b→ 0 as R→∞ is imposed for a finite free

energy E . The governing equations (1)-(3) subject to the boundary conditions imply that

the sum of the total kinetic energy and free magnetic energy E must decrease monotonically

by viscous dissipation11,

d

dt

∫
0<z<L

[
1

2
ρv · v +

1

8π
b · b

]
dV = −

∫
0<z<L

[
ν1 (∇× v)2 + ν2 (∇ · v)2

]
dV. (8)

It follows that as t → ∞, v → 0, as the field relaxes to the force-free field Bf (r) =

limt→∞B(r, t) described by

(∇×Bf )×Bf = 0, (9)

∇ ·Bf = 0. (10)

If the terminal field Bf (r) is analytic, then the vanishing of the Lorentz force implies

∇×Bf = αBf , (11)
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Bf · ∇α = 0, (12)

respectively expressing Ampere’s law for a field-aligned current density and the solenoidal

condition requiring the proportionality function α to be constant along each field line12,13.

The function α defining the current density must (i) yield a field solution Bf (r) that meets

boundary conditions (4) and (5), and (ii) be demonstrably the result of a continuous defor-

mation of the initial field Bτ (r) by the viscous flow.

The two-plate problem for Bf (r) is topological in nature, not a traditional boundary

value problem. Let us use the textbook definition of topology encompassing the properties

of a given geometric object that are invariant under all continuous deformation of the object.

Topological properties are formidable to described explicitly, e.g., the mutual linkages among

closed tubes of magnetic flux or, in the case of the two-plate problem, the mutual field-line

mapping of the foot-points fixed on z = 0, L and the interweaving among the field lines, both

invariant under the frozen-in condition. We avoid such formidable explicit descriptions by

the conceptual sufficiency of knowing that the two fields Bτ (r) and Bf (r) are topologically

equivalent if and only if one is continuously deformable into the other.

A continuum of scalar functions α exists for which Bτ (r) and Bf (r) are topologically

equivalent analytical fields. The Theorem makes its first essential point here, that a

topologically-equivalent analytical Bf (r) generally does not exist for an arbitrarily pre-

scribed Bτ (r). Equation (12) is a hyperbolic PDE for α, with the field lines as the char-

acteristics that, in general, do not a priori allow Bf (r) to be continuous everywhere; see

Chapter 3 of the monograph.

To account for TDs in the field Bf (r), we formally generalize (11) to the form:

∇×Bf = αBf +
∑
j

Cj (Sj) . (13)

as a statement of Ampere’s law, where Cj are a set of discrete current flowing in their

respective TDs located on flux surfaces Sj. By Cj being discrete it is meant the ”profile”

of the current density across Sj is a Dirac δ-function, the current density being unbounded

but carrying a finite integrated current14,15. This Ampere equation is coupled to equation

(12) describing field-aligned current density in the continuous part of the magnetic field.

The discrete currents Cj flowing in surfaces Sj cannot be arbitrarily inserted into the

otherwise continuous force-free field. Decompose the Lorentz force into the sum of magnetic-
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tension and isotropic-pressure forces,

1

4π
(∇×B)×B =

1

4π
(B · ∇) B−∇

(
B.B

8π

)
. (14)

The integral of the Lorentz force across a TD surface Sj has no contribution from the tension

force, with the net force on Sj given by the difference between the pressure forces on its

two sides. Therefore, the surface Sj in force equilibrium requires the magnetic pressure to

be continuous across it. That is, the TDs embedded in Bf (r) are in equilibrium with the

tangential field rotating an abrupt angle at constant amplitude across each TD. This TD

equilibrium condition is subject to the requirement that Bf (r) given by the Ampere’s law

is topologically equivalent to Bτ (r).

The Theorem is stronger than stated above. For most prescribed Bτ (r), its terminal

field Bf (r) must embed equilibrium TDs. A variational description of Bf (r) offers a useful

perspective.

A. The variational two-plate problem

Consider the deformation of the frozen-in field in terms of the Lagrangian fluid displace-

ments under mass conservation and induction equations (2) and (3). The end result of any

continuous deformation of the fluid is a reversible, one-to-one Lagrangian transformation16

r = r(r′), (15)

Lij(r, r
′) =

∂xi
∂x′j

, (16)

|L| = εijk
∂x1

∂x′i

∂x2

∂x′j

∂x3

∂x′k
6= 0, (17)

describing the Cartesian location of each fluid element at r = (x1, x2, x3) ≡ (x, y, z) dis-

placed from its previous Cartesian location at r′ = (x′1, x
′
2, x
′
3) ≡ (x′, y′, z′). Continuity of

deformation means that the infinitesimal neighborhood of every fluid element in r′-space

is transformed onto an infinitesimal neighborhood of the fluid element in r-space. Thus,

different histories of continuous deformations are topologically equivalent if they produce at

the end the same Lagrangian transformation of the fluid elements.

Equations (2) and (3) are equivalent to the Lagrangian displacements of fluid and field

ρ(r) =
ρ′(r′)

|L|
, (18)
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Bj(r) =
Lij
|L|

B′i(r
′), (19)

the prime denoting variables in the Cartesian r′-space. The flux surfaces of the field deform

as fluid surfaces. Thus, any pair of flux surfaces of B(r) transforms into a corresponding

pair of flux surfaces of B′(r′) sandwiching the same ”frozen” fluid between them.

In the two-plate problem, any given continuous field in 0 < z < L, with foot-points fixed

at the boundaries, defines a vector-function space B(τ) of topologically-equivalent continuous

fields, now interpreting τ to denote the common topology of the fields. In other words, any

two fields in B(τ) are continuously deformable one into the other, related by a reversible

Lagrangian transformation (16). Suppose B(τ) contains a unique field with the lowest field

energy E in B(τ). Then, this field is the terminal field Bf (r) of the time-dependent solution

to the two-plate problem. That is, in the space B(τ), each field Bτ (r) as the initial state is

connected by a viscous evolutionary path to the field Bf (r).

We thus arrive at the variational problem,

δE ≡ 1

8π
δ
∫

0<z<L
b · b dV = 0, B = B0 + b ∈ B(τ), (20)

that identifies Bf (r) as an extremum in E . Then, force-free equations (11) and (12) are

the extremizing Euler-Lagrangian equations to be solved for Bf (r) subject to (i) boundary

conditions (4) and (5), and (ii) the condition that Bf (r) ∈ B(τ), i.e., Bf (r) is topologically

equivalent to a given Bτ (r).

The Theorem states that, in general, the terminal field Bf (r) may contain TDs, in which

case, Bf (r) /∈ B(τ) and the variational problem (20) defined over the space B(τ) does not

have a solution. This is an intrinsic feature of variational calculus17. Since E is bounded from

below, it unquestionably has a minimum value in B(τ), whereas that minimum may not be

realized by any field in B(τ). In practice the minimum can be determined by an evolutionary

path in B(τ) of a monotonically decreasing E , such as defined by a viscosity-driven time-

dependent solution to the two-plate problem. If Bf (r) contains TDs, the E-minimizing

path can approach the minimum value as close as desired without leaving B(τ). Generally,

the space B(τ) is mathematically not compact, in the analogous sense of a partially open

interval 0 ≤ x < 1. In the latter, an infinite series of points can converge as close as desired

on the end point x = 1 without leaving the interval, despite the fact that this end point

does not belong to the interval. Whereas, an infinite series can converge and arrive at the

other endpoint x = 0 which belongs to the interval.
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Specifying the space B(τ) completes the statement of the variational problem (20), with-

out which the extremum condition δE = 0 is neither defined nor meaningful. The analytical

force-free field of a topology τ satisfying equations (11) and (12) is an instance of the varia-

tional problem possessing a solution. But, this field belongs to a topologically restricted set,

for there is the other distinct set of fields in topologies requiring the presence of equilibrium

TDs. The existence of the latter is the reason for the general absence of a solution to the

variational problem defined by specific spaces B(τ). The TD-bearing force-free fields are

not discontinuous in an arbitrary manner but are identified by their respective spaces B(τ).

They satisfy the Euler-Lagrangian equations as weak solutions, their discontinuities satisfy-

ing force balance in the integral sense analogous to the hyperbolic equations of compressible

hydrodynamics18. Hydrodynamic shocks are weak solutions that satisfy the conservative

PDEs in the integral sense of preserving the conserved quantities across the shocks.

The minimum-energy force-free field of any given topology τ must physically exist under

the frozen-in condition, and this is ensured by including the weak solutions to the variational

problem (20). Here we arrive at the practical problem of how a given invariant topology is

to be implemented in the direct construction of a force-free field.

B. Euler flux-function construction of force-free fields

Let us assume analyticity and represent a field by a pair of Euler flux functions16,

B(x) = ∇U ×∇V,

=
∂ (U, V )

∂ (y, z)
x̂ +

∂ (U, V )

∂ (z, x)
ŷ +

∂ (U, V )

∂ (x, y)
ẑ, (21)

automatically satisfying solenoidal condition (10). The representation implies B · ∇U =

B · ∇V = 0, showing that the level surfaces of U and V are magnetic flux surfaces that

mutually intersect along field lines. Thus, each field line is a line of constant U and V . This

geometric relationship also applies to the field-aligned current density of a force-free field,

for which (∇×B) · ∇U = (∇×B) · ∇V = 0, reducible to

∇ · (B×∇U) = ∇ · [(∇U ×∇V )×∇U) = 0, (22)

∇ · (B×∇V ) = ∇ · [(∇U ×∇V )×∇V ) = 0. (23)
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That is, force-free equation (9) is equivalent to the two coupled second-order PDEs for

(U, V ),

∇ ·
[
(∇U · ∇V )∇U − |∇U |2∇V

]
= 0, (24)

∇ ·
[
(∇U · ∇V )∇V − |∇V |2∇U

]
= 0, (25)

to be solved subject to boundary conditions on (U, V ).

In terms of (U, V ), induction equation (3) takes the form

∂U

∂t
+ v · ∇U = 0, (26)

∂V

∂t
+ v · ∇V = 0, (27)

describing each fluid element carrying a pair of unchanging values of (U, V ) in any velocity

v. Consider the displacement Ti,j(r, r
′) of a fluid element from a previous location r′ to the

present location r. Then, induction equations (26) and (27) relate B′(r′) = ∇′U ′ ×∇′V ′ to

B(r) = ∇U ×∇V by

[U(r), V (r)] ≡ [(U ′(r′), V ′(r′)] . (28)

Flux-surfaces are well defined locally but are not necessarily extendable globally. For

example, a 3D field wholly contained in a fluid domain may have infinitely long, volume

filling, ergordic field lines that anywhere do lie on locally well-defined flux surfaces, but

these flux surfaces cannot be extended globally. Field representation (21) is convenient if

the flux functions (U, V ) are globally defined, which is the case for the two-plate problem

where the initial field Bτ (r) is prepared by a continuous deformation of the uniform field

B0.

The flux surfaces of B0 = ∇U0×∇V0 = B0 with [U0, V0] =
√
B0 [x, y] are globally defined,

two families of Cartesian planes of constant x and constant y. The field Bτ (r) = ∇Uτ ×∇Vτ
is prepared from B0 by an arbitrarily chosen, continuous fluid displacement T τi,j(r, r

′). The

flux surfaces of Bτ (r) are thus also globally defined. The fields topologically equivalent to

the prepared Bτ (r) define the space B(τ). Therefore, the two-plate initial-boundary value

problem seeks the terminal force-free field Bf (r) = ∇Uf×∇Vf as a solution to the force-free

equations (24) and (25) for [U, V ] = [Uf , Vf ], subject to boundary conditions

z = 0, [U, V ] = [Uτ (x, y, 0), Vτ (x, y, 0)] , (29)

z = L, [U, V ] = [Uτ (x, y, L), Vτ (x, y, L)] =
√
B0 [x, y] , (30)

R =
(
x2 + y2

)1/2
→∞, [U, V ]→

√
B0 [x, y] , (31)
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and subject to the additional requirement that Bf (r) and Bτ (r) are topologically equivalent.

There are two Lagrangian transformations in this construction of the force-free field

Bf (r), the first being T τi,j(r, r
′) that prepares Bτ (r) from B0. The other transformation de-

noted by T fi,j(r, r
′) is defined by the field solution Bf (r) as a solution of the above boundary-

value problem, which is required to be continuously deformable from the prepared Bτ (r)

represented by a relationship

[Uf (r), Vf (r)] ≡ [(U ′τ (r
′), V ′τ (r

′)] . (32)

All Lagrangian transformations are reversible, so the reverse of T fi,j(r, r
′) takes Bf (r) into

Bτ (r). The transformation T τi,j(r, r
′) is conceptually relevant to the two-plate problem in

ensuring Bτ (r) has globally defined flux functions by virtue of B0, but is not directly related

to Bf (r).

The Theorem can be seen in terms of the general absence of an analytical solution

[Uf (r), Vf (r)] to the above boundary value problem. Although nonlinear PDEs (24) and

(25) are formidable, their basic mathematical features can be understood with the physics

of the Theorem treated in the monograph and the subsequent works derived from it. It

bears reminding that analyticity is an assumption extraneous to the physics of the problem.

When the topology of Bτ (r) is such that the boundary value problem yields no analytical

solution, the physics of the problem must give up the assumption of analyticity and allow

for Bf (r) to possess TDs as a weak solution of the force-free equations.

There is an incomplete topological relationship between [Uf , Vf ] and [Uτ , Vτ ], contained

in boundary conditions (29) and (30) that demand for Bf (r) and Bτ (r) to possess the same

mapping of the foot-points on z = 0 onto z = L. Now, the preparation of Bτ (r) from

B0 endows Bτ (r) with two topological properties, the said foot-point mapping as well as a

specific interweaving of the field lines going from boundary to boundary. The mathematical

structure of the boundary-value problem does not permit both the foot-point mapping and

the field-line interweaving to be imposed on the field solution Bf (r).

Subject to imposing only the foot-point mapping, an analytical Bf (r), assuming it exists

as determined by the boundary value problem, may or may not be topologically equivalent

to the given Bτ (r). If the two fields are topologically equivalent, we would, indeed, have

found the proper solution Bf (r) for the given Bτ (r). Their topological equivalence is then

described by a specific continuous fluid displacement T fi,j(r, r
′) that relates their respective
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pairs of flux functions stipulated by equation (32).

There are two other possibilities to consider, one being the case of the existing analytical

solution Bf (r) found not to be topologically equivalent to Bτ (r), that is, Bf (r) /∈ B(τ).

The other case is that the boundary-value problem has no solution. In either cases the

solution to the physical problem is then a field Bf (r) embedding equilibrium TDs, whose flux

functions [Uf (r), Vf (r)] are weak solutions. Then, there is no simple continuous displacement

transformation T fi,j(r, r
′) to speak of. Instead we must deal with an infinite sequence of

fluid displacements T
{τ→f}
i,j (r, r′) that takes [(U ′τ (r

′), V ′τ (r
′)] to as close to the weak solution

[Uf (r), Vf (r)] as desired.

C. A perspective view of TD formation

The frozen-in interaction among three flux systems is basic to TD formation, depicted

as a 3D process in Figure 1c. The magenta and white flux surfaces belong to two local flux

systems that converge to make TD contact through a hole or gap in the green flux surface

belonging to a third intervening flux system that has been locally expelled out of the way.

Actually, similar holes in a laminated layer of flux surfaces of the third system create a

tunnel through which the two converging systems enter to meet each other. A contorted

flux surface keeps the three systems topologically invariant and distinct. This and other

displaced flux surfaces become a complex of TDs during a dynamical evolution towards a

minimum-energy state. Each TD attains force balance by equalizing the magnetic pressures

on its two sides as the current density aligns with the continuous part of the field. Here

we present four instructive demonstrations of TD formation to complete our analysis of the

two-plate problem.

1. The force-free field as a small-parameter power series

The Theorem was discovered in the Parker study of a power-series solution1 for Bf (r) to

the two-plate problem,

Bf = B0 + b

≡ B0ẑ +
∞∑
n=1

bnε
n, ε << 1,

z = 0, L, bn,z = 0 for all n. (33)
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Let us assume analyticity by which ∇× (∇p) ≡ 0 for any scalar function p(r). Therefore,

force-free equation (14) imposes the necessary condition on the tension force,

∇× [(B · ∇) B] = 0, (34)

for the field to be analytical. In the two-plate problem, the power-series force-free field

Bf (r) is to be topologically equivalent to Bτ (r) similarly expressed as a power series. With-

out needing to deal with this formidable requirement, Parker first proved by mathematical

induction that the necessary condition (34) implies

∂

∂z
bn = 0, for all n, in the limit ε→ 0. (35)

That is, the force-free field Bf (r) can have no z variation in the limit ε→ 0.

This rigorous result arises physically from the anisotropic nature of the Lorentz force.

The tension force at each point in space lies in the plane of the tangent and normal to the

field line at the point. Whereas, the pressure force acts along the normal to the surface of

constant field pressure at the point. Equation (34) is a global condition on the geometric

compatibility for the two forces to balance everywhere in space, a compatibility not always

possible under the assumption of analyticity.

Let ε characterize the size of the horizontal spatial variations of the twisted initial field

Bτ (r) in Figure 1b. Under the assumption of analyticity, the thicknesses of the boundary

layers at z = 0, L may be expected to be of the order of ε and one might neglect them in

the limit ε→ 0. Although the result (35) demanding d
dz

Bf (r) = 0 is obtained in that limit,

it reveals that analyticity is generally overly restrictive for a force-free field. The initial

field Bτ (r) is arbitrarily prescribed, generally possessing an irremovable z-dependence in its

field-line interweaving that is inherited by Bf (r). For field topologies with irremovable z

dependence, their force-free states must embed equilibrium TDs.

Two noteworthy corollaries follow. Firstly, TDs forming in Bf (r) must extend along flux

surfaces to intersect z = 0, L where the the field intensities may be unbounded while the

TD discrete currents remain bounded, a remarkable demonstrable property of boundary

rigidity19,20. In other words, the boundary layers at z = 0, L are mathematically singular

in a complex manner. Secondly, The overly restrictive condition d
dz

Bf (r) = 0 imposed by

analyticity implies that the analytical force-free fields are a continuum that is conceptually

of a far smaller size than the continuum of TD-embedding force-free fields.
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2. Multiple-flux interaction

Consider the Lundquist force-free field,

B = J1(α0R)ϕ̂+ J0(α0R)ẑ (36)

in cylindrical coordinates (R,ϕ, z), a solution to force-free equations (11) and (12) with

α = α0, a positive constant. Replacing the z component with B0, a constant, we obtain a

non-equilibrium cylindrical field confined within a finite radius

Bα0 = J1(α0R)ϕ̂+B0ẑ, R ≤ R0, (37)

whereR0 is related to the constant α0 given by the first zero of the Bessel function J1(α0R0) =

2.83 ; see Figure 2a. A rich variety of the initial, global non-equilibrium field Bτ (r) for the

two-plate problem can be constructed out of cylindrical field (37). Each global field varies

only with (x, y) and is composed of the uniform field B0 studded with any chosen number of

the cylindrical field of an α0-value that occupy non-overlapping cylindrical volumes. Notably,

two or more of these cylindrical fields of different cylindrical sizes can be juxtaposed to be

in tangential contact.

Figure 2b shows the simplest case of a periodic 2D array of identical non-equilibirum

cylindrical fields, taken from the monograph. With sufficiently strong twist built into them,

the cylindrical fields would all expand to create gaps in the exterior initially uniform field. In

the relaxed force-free state, the expanded cylindrical fields are hexagonally shaped, displac-

ing and compressing their untwisted external field into unconnected interstitial spaces. The

flux surfaces that keep the cylindrical fields and their external fields topologically distinct,

naturally become TDs, subject to the continuity of the magnetic pressure across them. If

L is sufficiently larger than R0, the field away from the boundaries z = 0, L would yield to

the expansion of the cylindrical fields as described. Whereas, field displacements are greatly

restrained in the two boundary layers along these rigid boundaries. These TDs intersect the

anchoring boundaries where the field exhibits a severe mathematical singularity19,20.

TDs can also form inside each cylindrical field, a complicated process possible to infer

from the simple case of single cylindrical field studded into B0 depicted in Figure 3a. The

relaxation of this field proceeds with an initially non-zero Lorentz force in R < R0,

(∇×Bα0)×Bα0 = −
[

1

2

d

dR

(
B2
ϕ

)
+
B2
ϕ

R

]
R̂

= −J1(α0R)J0(α0R)R̂ (38)
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FIG. 2. (a) The Lundquist Bϕ(R) = J1(α0R). (b) Sectional views of a periodic array of iden-

tical, right-handedly twisted, cylindrical fields studded into a (hatched) uniform field B0, not in

equilibrium (top) and in a relaxed force-free state (bottom), the latter showing the expanded

cylindrical fields in hexagonal TD-contact and the compressed, external untwisted field trapped in

unconnected interstitial spaces.

as the sum of a pressure force and a tension force defined by Bϕ. The tension force
B2

ϕ

R
acts

radially inward everywhere. The pressure B2
ϕ vanishes at R = 0, R0 and is maximum at

R = R2; see Figure 2a, The Lorentz force is thus inward in 0 < R < R1 and outward in

R1 < R < R0, R1 defined by the first zero of Bessel function J0(α0R1) = 0 with R2 < R1.

The non-equilibrium cylindrical field would thus expand in opposite radial directions from

R = R1, the radially inward expansion driving a classical pinch and the radially outward

expansion pushing into the external, initially uniform field. The rigid anchoring of the

field at z = 0, L immediately results in a significant dependence on z in the relaxed field.

Around the R = 0 axis, the magnetic twist in the narrowed, magnetic flux tube propagates

in opposite directions to the boundaries to be accumulated in the funnel-shaped, anchored

parts of the flux tube21,22. In contrast, in the outer cylindrical shell of magnetic flux, away

from the R = 0 axis, magnetic twist propagates away from the boundaries to accumulate

about the mid-plane z = L/2 where the flux is expanded, sketched in Figure 3a.

This is an intriguing theoretical phenomenon worthy of further investigation. Figure
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FIG. 3. (a) The domain 0 < R, 0 < z < L of a single non-equilibrium cylindrical field initially

continued at R = R0 into the external uniform field B0 described in text. Relaxation to a force-

free state involves the flux surfaces Σ0 and Σ1 deforming, as sketched, from their initial cylindrical

shapes (dashed lines) while anchored to z = 0, L at R = R0 and R = R1, respectively. Symmetry

about the mid-plane z = 0.5L is assumed. (b) A 3D sketch from21 showing the dynamical accu-

mulation of magnetic twists at the widened end of a cylindrical flux surface that has a gradual

spatial increase of its cylindrical radius along the length of the cylinder. This sketch is reproduced

in sub-figures (a) and (c), appropriately sized and oriented to indicate magnetic twist transport

in the pinched field around the axis R = 0. (c) Consequence of breaking the mid-plane symmetry

assumed in the dynamical development in (a). The detail dynamics of the force-free relaxation

would determine a critical, intervening flux surface (not shown) between Σ0 and Σ1, that separates

the pinched axial flux from its shell of outer flux, magnetic twist accumulating toward z = 0, L in

the former versus accumulating away from z = 0, L in the latter flux. This critical flux surface as

well as Σ0 may be inferred to be among the TDs forming during the relaxation.

3a assumes symmetry about the mid-plane. Breaking this symmetry would allow unequal

discrete amounts of twist accumulating to the boundaries in the pinched flux around the

R = 0 axis, sketched in Figure 3c. Similarly, unequal discrete amounts of twist would

propagate from the boundaries to accumulate about the mid-plane where the outer shell of

flux has expanded. The critical flux surface separating these two dynamically distinct flux

regions would then become a TD23.
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3. The Parker optical analog

Gaps in the flux surfaces of a force-free field have an optical analogy24. The respective

flux surfaces of a force-free field B and its field-aligned current density coincide. Therefore,

the curl of B has no component perpendicular to a flux surface, and B must be a potential

field in the flux surface,

Bff = ∇φ(ξ1, ξ2),

=
1

h1

∂φ

∂ξ1

ξ̂1 +
1

h2

∂φ

∂ξ2

ξ̂2, (39)

described by orthogonal coordinates (ξ1, ξ2) with the Lame coefficients [h1(ξ1, ξ2), h2(ξ1, ξ2)]

that define the gradient operator and the path-length element ds2 = h2
1dξ

2
1 +h2

2dξ
2
2 . On this

flux surface, the field lines are described by the differential equations

Bh1
dξ1

ds
=

1

h1

∂φ

∂ξ1

,

Bh2
dξ2

ds
=

1

h2

∂φ

∂ξ2

, (40)

where B(ξ1, ξ2) is the field amplitude, whereas B2 and the potential φ are related by the

first order PDE,

[∇φ(ξ1, ξ2)]2 =

(
1

h1

∂φ

∂ξ1

)2

+

(
1

h2

∂φ

∂ξ2

)2

= B2, (41)

recognizable as the equation for optical ray paths in a medium with φ and B as the optical

eikonal and refractive index, respectively. Thus, differential equations (40) describe the field

lines as optical rays streaming and refracted by a variable refractive index B(ξ1, ξ2).

The bending of light-rays around a region of high refractive index (i.e., strong amplitude

B) has a concavity of the appropriate sense to correspond to the tension force balancing

the outward pressure force. This lensing effect can be so severe that the rays are optically

excluded from a local region containing a maximum refractive index. In analogy, the balance

between the magnetic tension and pressure forces may require the displacement of field lines

to open up gaps in a flux surface where none existed in the continuous field not in equilibrium.

Through those gaps, magnetic fluxes external to the flux surface meet one another to form

TDs.

Note that TD equilibrium requires B2 to be continuous, i.e., these gaps involve no dis-

continuity in refractive index B in the optical analog. Whereas, the vector field B is discon-

tinuous across TD. Not only has analyticity broken down, gaps in flux surfaces must appear
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in the force-free field Bf (r) where none existed in the initial field Bτ , two reasons for the

(U, V ) boundary value problem to possess no analytical solution.

4. Multiple flux interaction in the Cartesian plane

Spontaneous current sheets take a simple form for three or more planar flux systems

interacting in the unbounded y − z space above boundary z = 0 where magnetic foot-

points are rigidly anchored. The properties discussed below are well known2,15,19,25 that now

take an instructive significance when examined in relation to the Theorem as developed in

Subsections A and B.

With x as an ignorable coordinate, consider the solenoidal field lying in the y − z plane

with its current density,

B = ∇x×∇A(y, z), (42)

∇×B = −∇2A x̂, (43)

in terms of a flux function A(y, z). Field lines are curves of constant-A in the y − z plane.

Independent of any topological consideration, the above current density being everywhere

perpendicular to its field implies that the field, if force-free, must be potential, satisfying

Laplace equation

∇2A = 0 (44)

subject to a given distribution of A(y, 0) which fixes the normal field component Bz on

z = 0. We also impose the condition that B.B vanishes in the far
√
y2 + z2 → ∞ to treat

fields with finite energy in z > 0. Let Bpot = x̂ × ∇Apot(y, z) denote the unique potential

field fixed by A(y, 0).

Figure 4a is a sketch of a three-flux field that is symmetric in y and not force-free in z > 0,

with a specific A(y, 0) giving a boundary Bz(y, 0) that reverses sign on three locations on

z = 0. The field has a specific topology τ defined by the map of boundary z = 0 onto

itself from one boundary foot-point to the other of each field line as a curve of constant-A.

This field is one of the continuum of continuous fields of all topologies admissible in z > 0

for a fixed A(y, 0). In the language of Subsection A, the vector-function space of all these

continuous fields may be decomposed into the union of the disjoint sub-spaces B(τ) each
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FIG. 4. Three fields admitted by a fixed boundary A(y, 0) distribution on z = 0. (a) A

non-equilibrium field comprising 3 flux systems with no neutral point. (b) Equilibrium field

embedding a vertical equilibrium TD and topologically equivalent to field (a). (c) The potential

field comprising 4 flux systems with an X-type neutral point, not topologically equivalent to fields

(a) and (b); no other analytical force-free field than field (c) exists for the fixed A(y, 0).

containing fields of the same topology τ ,

Ball =
⋃
τ

B(τ). (45)

Under the frozen-in condition, with the foot-points anchored rigidly on z = 0, any field is

continuously deformable only into another of the same topology τ .

The force-free field Bf of a chosen τ is given by the modified Dirichlet variational principle,

δE = δ
∫
z>0

Bτ ·Bτ dydz ≡ δ
∫
z>0
|∇A|2 dydz = 0, Bτ ∈ B(τ), (46)

that is, the variational extremum is taken over the subspace B(τ) instead of the space Ball
of all fields15. The given A(y, 0) alone determines a unique potential field Bpot, the only

analytical force-free field admissible by A(y, 0). Therefore, the extremum problem (46) has

no analytical solution for A for all chosen topologies except for the one τ = τpot of Bpot. For

τ 6= τpot, the extremum problem has a physical, non-analytical solution A with discontinuous

first derivatives, describing a TD bearing force-free field.

Figure 4(c) is a sketch of the case of a potential field Bpot determined by A(y, 0) fixed by

the non-force-free field Bτ∗ in Figure 4(a). The former is a four-flux field in a topology τpot

containing an X-type neutral point, whereas the latter is a three-flux field with a specific

topology τ∗ containing no neutral point, the two fields not topologically equivalent. Figure

4(b) is a sketch of the force-free field Bf embedding a TD, given by the weak solution Af

to the extremum problem (46) for τ = τ∗. Direct calculation shows that Af satisfies the

Poisson equation

∇2A = f(z)δ(y), (47)
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subject to the given A(y, 0) and the far boundary condition for a finite magnetic energy.

Here f(z) 6= 0 in 0 < z < z0, describing a vertical current sheet extending to a height z0,

of a profile such that Bf is topologically equivalent to Bτ∗. Relating to the two-plate initial

boundary-value problem, viscous relaxation would take a field in the initial state Bτ∗ along

an evolutionary path in subspace B(τ∗) to Bf as the terminal, TD-embedding force-free

field.

This example illustrates the general extreme paucity of analytical force-free states in a

perfectly conducting fluid. Fixed by A(y, 0) describing where a field enters and leaves the

domain z > 0, the fields of all topologies, with just one exception, can attain force-free

equilibrium only by embedding TDs. This paucity of analytical force-free states parallels

the Theorem Parker discovered in his ε-expansion force-free fields. In the latter, a continuum

of analytical force-free fields exists but they are over restricted to be independent of z. These

fields are sparsely distributed among the continuum of TD bearing z-dependent force-free

fields.

The solenoidal field with x as an ignorable coordinate may have three components,

B = Bx(y, z) x̂ +∇x×∇A(y, z), (48)

∇×B = −∇2A x̂−∇x×∇Bx(y, z). (49)

Force-free equations (11) and (12) impose the condition that Bx(y, z) varies as a strict

function of A(y, z) and reduce to the Shrafanov equations,

∇2A+Bx(A)
dBx(A)

dA
= 0,

α =
dBx(A)

dA
. (50)

With α 6= 0, this more general class of force-free fields admits field aligned current densities.

In this class the same basic property of continuous force-free fields being distributed sparsely

among the TD force-free fields is found in even richer diversity19,20. This general sparsity of

continuous equilibrium fields was not appreciated at the time the 2D force-free fields were

studied, but an important point was recognized then, that the presence of a magnetic neutral

point is not essential for the formation of a TD25–27.
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III. OVERVIEW

The Magnetostatic Theorem is not strictly magnetostatic, of course. The general in-

evitable presence of TDs in an equilibrium field of an arbitrary 3D topology is due to the

readiness, under the frozen-in condition, for a flux system to be expelled out of the way

and let two other flux systems make direct contact. The formation of a TD is a localized

process but the inevitability of this process occurring somewhere or everywhere in the field is

a global process driven by the topological invariance of the field. In the two-plate problem,

topological invariance takes the simplest form of an unchanging topology in the rigidly an-

chored field. Thus, the physical and mathematical reasonings of the Theorem could proceed

in this problem by using the concept of topological equivalence without having to explicitly

deal with the field’s interesting but formidable topological properties4,28–35. That is, the

rigid boundary conditions have no significance beyond being a theoretical simplification for

a straightforward demonstration of TD formation as a universal property of the frozen-in

field.

In a compressible, perfectly-conducting hydromagnetic fluid, mathematical discontinu-

ities of two kinds are physically admissible, namely, the hydromagnetic shock waves, associ-

ated with the fast and slow mode continuous waves; and the moving contact fluid surfaces.

The latter include boundaries separating different kinds of fluids as well as the magnetic

rotational discontinuities associated with the Alfven waves36. Thus, the corona evolving

quasi-steadily to the slow moving photoshere is naturally pervaded with near-equilibrium

TDs forming under the condition Lη >> 1, the TDs forming only to dissipate by resistive

reconnection that leads to a change in field topology and further TD formation, as we have

described.

The continuum of analytical force-free fields being sparsely immersed37 into the ”even

larger” continuum of TD-embedded force-free fields has a probabilistic interpretation6,23.

A random pick from the continuum of all the admissible field topologies in a hydromag-

netic system has essentially zero chance of being a topology compatible with an analytical

force-free field. This corollary of the Theorem is the basis for the assertion that, following

the dissipation of a TD under a breakdown of the condition Lη >> 1, the likelihood for

spontaneous TDs returns with the restoration of the high-conductivity condition. This is

the attractive feature of the Parker theory of coronal heating as a turbulently sustained
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hydromagnetic process. By this process, near perfect conductivity is as much a consequence

of as it is the origin of the maintained high temperature of the fully ionized corona.

The Theorem is a radical complement to the classical hydromagnetic approach9 of per-

turbing a given continuous equilibrium field to discover its instability to linear and nonlinear

perturbations. The complementary approach deals with a fundamentally distinct effect, that

equilibrium and field analyticity are generally incompatible if field topology is to be pre-

served under the condition of perfect conductivity. That is, continuous equilibrium fields

may be in the probabilistic sense non-existent under general astrophysical circumstances.

It is intriguingly instructive to think of a circumstance under which a system admits only

one continuous equilibrium state that is unstable38. Perturbing this field must result in an

evolution towards a lower-energy equilibrium that must be a field embedding one or more

TDs. The Theorem is at the root of many studies on field topology as the global driver of

TDs and their subsequent dissipation via magnetic reconnection39–46.

The present paper has laid out the elements of the Theorem, viewed from its variational

formulation and from the surgically-detailed mathematical nature of the force-free equations

in terms of the Euler flux functions. Parker’s concept-transforming analysis in his monograph

may be assessed to have given us a physically complete understanding of the Theorem,

whereas Section II has given a survey of many unsolved magnetostatic problems worthy

of effort to advance the Theorem. The formation of TDs in multiple flux systems in the

Cartesian plane, an old result interpreted afresh in light of the Theorem in Section II.C.4,

parallels the corresponding TD formation in Parker’s ε-expansion 3D force-free fields. This

interpretation gives a glimpse of the wealth of spontaneous current-sheet processes yet to be

discovered.

We have limited our attention to the force-free fields, to keep the physical problem simple.

Irrepressible spontaneous current sheets also operate in more complex hydromagnetic sys-

tems, e.g., in the presence of fluid pressure, steady fluid flows, and complex thermal-energy

transport in the corona47,48. To solve the mathematical problems surveyed in Section II

beyond the analytical success we happen to have, direct numerical simulation holds the only

realistic promise. The physical understanding of the Theorem provides guidance in formu-

lating numerical simulations11,46,49–51 capable of handling the required, orders of magnitudes,

broad range in computational Lundquist number Lη. That understanding also guides the

search for the implications of the Theorem in coronal observations6,52.

22



IV. ACKNOWLEDGMENT

This work is dedicated to the late Eugene N. Parker. Section 2 is a product of con-

versations between the author and E. N. P. during the pandemic years 2020-2022. The

author thanks Phil Judge for invaluable comments on this work, and Holly Gilbert and

Scott McIntosh for hosting and supporting his visit at the National Center for Atmospheric

Research.

REFERENCES

1Parker, E. N., Topological dissipation and the small-scale fields in turbulent gases, ApJ

174, 499, 1972.

2Parker, E. N., Spontaneous Current Sheets in Magnetic Fields (Oxford Univ. Press) 1994.

3Parker, E. N., Nanoflares and the solar X-ray corona, ApJ 330, 474, 1988.
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