

Invisible sunspots and implications for the monitoring of Solar Active Regions

Silvia Dalla⁽¹⁾, Lyndsay Fletcher⁽²⁾ and Nicholas Walton⁽³⁾

 ⁽¹⁾ Centre for Astrophysics, University of Central Lancashire, Preston, UK
 ⁽²⁾ Dept of Physics and Astronomy, University of Glasgow, UK
 ⁽³⁾ Institute of Astronomy, University of Cambridge, UK

AstroGrid study of region emergence and flare productivity

- AstroGrid UK Virtual Observatory project <u>www.astrogrid.org</u>
- Making integration and comparison of data from diverse sources transparent
- Enabling access and manipulation of large datasets and catalogues

Flare productivity of newly emerged paired/isolated Active Regions

- Use workflows to cross match catalogues of solar active regions and flares, to answer the question: Does emergence of a new region near another one increase flare productivity?
- AstroGrid workflows analysing USAF/Mt Wilson + GOES data: only small increase in flare productivity for paired regions (Dalla et al A&A 468, 1103, 2007)

Subset	n of regions	P (%)	F (flares/4 days)
NERs	2115	21.7 ± 1.0	0.639 ± 0.017
NERs paired	675	24.3 ± 1.9	0.696 ± 0.032
NERs isolated	1440	20.5 ± 1.1	0.613 ± 0.020
companions	676	39.3 ± 2.4	1.745 ± 0.051
old regions	1516	39.7 ± 1.6	1.689 ± 0.033

P = % of regions with flares F = mean flare number

Location of emergence of new regions

- USAF/Mt Wilson catalogue of sunspot groups for 24 years (Dec 1981- Dec 2005) - 6862 regions
- For each NAR identify where/when region was first observed

Displays strong East-West asymmetry

East-West asymmetry

- 825 new regions in [-60, -40]
- 177 new regions in [+40,+60]

Maunder paper (1907)

- First report of an East-West asymmetry in the location of emergence of sunspots: A.S.D. Maunder, 1907
- East-West asymmetry in sunspot areas also reported in the paper

[Image:

Royal

Greenwich

Observatory]

E. Walter Maunder

Fig. 24 Annie ("A.S.D.") Maunder (1868–1947) as a young woman. She was a solar astronome with a special talent for solar photography. (Courtesy of John McFarland, Armagh Observatory.)

Annie Maunder

[Image from book: "The Maunder Minimum and variable Sun-Earth connection", Soon and Yaskell, 2004]

East-West asymmetry explained

- Schuster (1911) explained Maunder's data as a visibility effect
- Minnaert (1939) introduced a graphical representation that makes the cause of the asymmetry clear:

Visibility function and number of regions observed

- N(λ)=number of regions
 observed to emerge in a unit
 bin at longitude λ
- N1=actual (constant) number of regions emerging in unit bin=actual rate of new region emergence

$$N(\lambda) = N_1 \left[1 - \frac{\Omega}{k} s'(\lambda) \right]$$

Schuster, 1911

 N(λ) depends on the gradient of the visibility function s'(λ) and on the growth rate k of sunspot regions' area

Recent assumptions on visibility

- Results by Maunder and Schuster appear to have been forgotten in recent times – East-West asymmetry often ascribed to observer bias
- Furthermore, since Minnaert, it has been assumed that the visibility function is:

 $s(\lambda)=1/cos(\lambda)=sec(\lambda)$

• geometric (foreshortening) visibility function: very flat near $\lambda=0$

Our work

- Confirm that Schuster's theory is in quantitative agreement with the data
- Use our asymmetry data to derive:
 - Visibility function
 - Growth rate/decay rate of sunspot regions
 - Quantify how many new emergences go completely undetected as a result of the visibility effect (invisible sunspots)

Locations of sunspot disappearances

 If the asymmetry in emergences is the result of poor visibility, a similar effect must be present for sunspot disappearance locations

Emergences + disappearances

$$N(\lambda) = N_1 \left[1 - \frac{\Omega}{k} s'(\lambda) \right]$$

$$n(\lambda) = n_1 \left[1 + \frac{\Omega}{l} s'(\lambda) \right]$$

Actual rate of region emergence

• For a symmetric visibility function, the following relations are expected to hold:

$$N_{+} + N_{-} = 2 N_{1}$$

$$n_{+} + n_{-} = 2 n_{1} = 2N_{1}$$

Ratio of growth/decay rates

$$N(\lambda) = N_1 \left[1 - \frac{\Omega}{k} s'(\lambda) \right]$$
$$n(\lambda) = n_1 \left[1 + \frac{\Omega}{l} s'(\lambda) \right]$$

- k / l =1.37±0.26 (from 16 longitude bins)
- On average, decay phase is only ~1.4 times longer than rise phase
- Fast rise + slow decay might be an observational effect

Derivative of visibility function

- Obtain s' separately from emergences and disappearances data
- Requires an assumption on the growth rate of sunspot regions k

$$N(\lambda) = N_1 \left[1 - \frac{\Omega}{k} s'(\lambda) \right]$$
$$n(\lambda) = n_1 \left[1 + \frac{\Omega}{l} s'(\lambda) \right]$$

Visibility function

- Fit s' expression $s'(\lambda) = c_1 \tan^{-1} (c_2 \lambda)$
- Integrate to find

$$s(\lambda) = c_1/c_2 [x \tan^{-1} x - 1/2 \ln(1 + x^2)] + A_{\min}$$

 $x = c_2 \lambda$

- Strong center-to-limb variation of visibility of small spots
- Visibility is much worse than expected from projection effects (geometrical, sec \u03c6)

Dalla et al A&A 479, L1 (2008)

Invisible sunspots

- 44% of new sunspots emerging between 0 and +60 are invisible
- The corresponding Active Regions are not given an Active Region number (unless they produce a flare) and are not monitored

An Active Region number is assigned to a region that satisfies one of the following criteria: (1) the region has been reported to have a sunspot group with first digit of its Modified Zurich Classification of C, D, E, F or H; (2) two or more reports confirm the presence of a Modified Zurich class A or B sunspot group; (3) the region produces a solar flare; or (4) the region is bright in H_{α} and exceeds 5 heliographic degrees in either latitude or longitude.

- Systematic bias affecting Western Active Regions
- Need for additional data for AR cataloguing

Apparent vs actual age of sunspots

- For the sunspots that are detected, actual times of emergence and decay can differ considerably from those that are observed
- Sunspot's lifetime is often underestimated eg regions crossing in and out of the visibility curve
- Distributions of sunspot lifetimes and decay times may need revising (Note: decay time distribution is used to infer mechanism of sunspot decay eg Martinez-Pillet et al,1993).

Further questions

- Cause of the strong centre-to-limb variation of visibility 3D structure of sunspots
- Will the same physical mechanism also affect larger spots and how?
- Visibility effects in magnetogram data?