### Can the Total Solar Irradiance be reconstructed from solar activity proxies ?



T. Dudok de Wit<sup>1</sup>, M. Kretzschmar<sup>1</sup>, J. Lilensten<sup>2</sup>, P.-O. Amblard<sup>3</sup>, S. Moussaoui<sup>4</sup>, J. Aboudarham<sup>5</sup>, F. Auchère<sup>6</sup>

<sup>1</sup> LPCE, Orléans, <sup>2</sup> LPG, Grenoble, <sup>3</sup> GIPSAlab, Grenoble, <sup>4</sup> IRCCYN, Nantes, <sup>5</sup> LESIA, Paris, <sup>6</sup> IAS, Orsay



### Why reconstruct the TSI ?

There have been many attempts to reconstruct pre-1978 values of Total Solar Irradiance (TSI) from proxy data





### Why reconstruct the TSI ?

There have been many attempts to reconstruct pre-1978 values of Total Solar Irradiance (TSI) from proxy data



Such reconstruction are needed to

- assess the solar forcing on climate
- understand the causes of the variability of the TSI



- Reconstructions of the TSI rely on
  - solar activity indices (sunspot number, ...)
  - geomagnetic indices (aa index, ...)
  - cosmogenic isotopes
  - solar dynamo models
- short-term reconstructions (days) have been quite successful so far...

## ...but long-term reconstructions (years) are much more difficult



#### before determining **HOW** to reconstruct the TSI from proxies

we need to determine

**IF** this reconstruction can be done at all

and

**WHICH** proxies are the regressors for the models



Community structure in the 108<sup>th</sup> U.S. house of representatives each dot represents a subcommittee (M. Porter et al., arxiv.org/physics/0602033)



### **Networks : studying interactions**

- Networks are important because structure affects function
- Examples
  - spread of disease in a population
  - robustness and stability of power grids

 Networks are today studied within the frame of statistical physics (percolation, critical exponents, phase transitions, ...)



- Networks are important because structure affects function
- Examples
  - spread of disease in a population
  - robustness and stability of power grids

 Networks are today studied within the frame of statistical physics (percolation, critical exponents, phase transitions, ...)

## Here we compare the TSI against 14 solar proxies, using daily measurements from 26 Nov 1978 till 30 Sep 2007



The 14 proxies for solar activity are:

- 1. **ISN** : international sunspot number (from SIDC)
- 2. **f10.7** : solar radio flux at 10.7 cm (Penticton Obs.)
- 3. MgII index : core to wing ratio of Mg II line (R. Viereck, NOAA)
   —> upper photosphere and chromosphere
- 4. CaK index : Ca K II equivalent width (Kitt Peak Obs.)
   —> plages and faculae
- 5. **HeI index** : equivalent width of He I line (Kitt peak Obs.) —> plages and faculae
- 6. Lya index : composite Lyman-α irradiance (T. Woods, LASP)
   —> upper photosphere up to corona



- 7. MPSI : magnetic plage strength index (Mt. Wilson Obs.)
  —> contribution from regions with 10 < |B| < 100 G</li>
- 8. MWSI : Mount Wilson sunspot index (Mt. Wilson Obs.)
  —> contribution from regions with |B| > 100 G
- 9. **DSA** : daily sunspot area (Greenwich Obs.)
- 10. **PSI** : photometric sunspot index (San Fernando Obs.)
- 11. Mean magnetic field of the Sun (Wilcox Obs.)
- 12. OFI : optical flare index (Ataç and Özgüç) —> intensity x duration of flares
- 13. **Coronal index** (Rybansky) —> total energy emitted by the solar corona in the FeXIV line at 530.3 nm
- 14. **CLMX** : neutron flux at Climax —> cosmic rays



### The TSI data

and also 3 TSI composites from



ACRIM (Willson & Mordvinov)



SARR (Mekaoui & DeWitte)



- Each proxy captures a different aspect of the solar variability
- Connections between proxies should reveal which mechanisms affect the TSI
- We compute the **mutual information** I(x, y) between each pair of proxies = amount of information that proxy x reveals about proxy y

$$I(x, y) = H(x) - H(x|y)$$
  

$$H(x) = -\int p(x) \log p(x) \, dx \quad \text{is the Shannon entropy}$$
  

$$p(x) \text{ is the probability density}$$



### The data



11



### **Different scales**

## The analysis is done separately for different scales, using a wavelet ("à trous") decomposition

Here, we focus on



The analysis is done separately for different scales, using a wavelet ("à trous") decomposition



#### short scale fluctuations

< 80 days effect of solar rotation, center-to-limb effects, ... long scale fluctuations > 1 year effect of solar magnetic cycle + trend

# COST 724

### **Connections for short time scales**

line thickness reflects level of mutual information



### **Connections for short time scales**

line thickness reflects level of mutual information

COST 72



# COST 724

### **Connections for short time scales**

line thickness reflects level of mutual information



### **Connections for long time scales**



COST 72



### **Conclusions (1/3)**

This **non parametric approach** reveals which mechanisms mostly contribute to the variability of the TSI :



This **non parametric approach** reveals which mechanisms mostly contribute to the variability of the TSI :

 short term dynamics : regions with intense magnetic fields that describe the irradiance deficit



This **non parametric approach** reveals which mechanisms mostly contribute to the variability of the TSI :

- short term dynamics : regions with intense magnetic fields that describe the irradiance deficit
- long term dynamics : mostly contribution from chromospheric regions (faculae, plages, ...)



This **non parametric approach** reveals which mechanisms mostly contribute to the variability of the TSI :

- short term dynamics : regions with intense magnetic fields that describe the irradiance deficit
- long term dynamics : mostly contribution from chromospheric regions (faculae, plages, ...)

→ flares do also contribute to the variability, see next talk



### Conclusions (2/3)





### Conclusions (3/3)





### Conclusions (3/3)











### **Multiscale decomposition**

