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Synopsis

e |Introduction

* Convection zone dynamics over the solar
cycle

e Solar-cycle changes in mode properties
(frequency, width and amplitude)

 The search for interior structural change




Introduction

Helioseismology uses acoustic waves to probe
the solar interior.

The history of systematic helioseismic
observations goes back more than 30 years.

Good-guality, continuous observations are
available from GONG and MDI for most of Cycle
23.

The observations uncover changing flow
patterns deep inside the convection zone.

Structural change is still hard to see.
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Convection-Zone Dynamics

« So-called ‘torsional oscillation’ is a pattern of weak
slower and faster zonal flows migrating from mid-
latitudes to the equator and poles over the solar cycle.

First observed by Howard and Labonte (1980) in surface
observations

Surface Doppler measurements from Mt Wilson go back
to 1986. (Ulrich 2001).
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Helioseismic Detections of the
Torsional Oscillation

e Woodard and  Seen in early MDI f-
Libbrecht (1993) saw mode data by
hints in BBSO data. Kosovichev & Schou
(1997)
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Helioseismic Detection of the
Torsional Oscillation

e Seen in 4 years of GONG and 3 years of MDI
data by Toomre et al. (2000), Howe, Komm &
Hill (2000), Howe et al. (2000)

* Penetration depth at least 0.92R.




Torsional Oscillation

Antia and Basu (2001) drew attention to high-
latitude, poleward-moving part of phenomenon.
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Fic. 3 —Rotation rate residuals at ¥ = 0.98 R plotted as a function of time for different latitudes. The latitudes are marked mn the figure. The results were
obtained using two-dimensional RLS inversion of GONG (lgft) and MDI (right) data.




Torsional Oscillation

e Vorontsov et al (2003) showed that the
phenomenon involves much of convection
zone, and analyzed the signal in terms of
11-year sm_u___smdal varlatlo_n%s
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Torsional Oscillation

e \Vorontsov et
al 2002

e Extrapolation
using 11-yr
sinusoid
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Zonal Flow Pattern
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Zonal Flow Patterns (Time-Radius)
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Howe et al 2005
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A Complete 11-year Solar Cycle

e Zonal flows from combined GONG and MDI data
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Torsional Oscillation: Latest

e We now have a full  Animation based on
11yr cycle of 11+11/2 year

observations! sinusolds.
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Comparison of near-surface flow
observations
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Variations at the Tachocline
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See Howe et al. (2000; Science 287, 2456)




Tachocline oscillations
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Solar-cycle Variation of Meridional

Converging
residual flow

idual Meridienal Flows (m/s)
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Mean zonal and meridional flows
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Can helioseismic measurements
help predict solar cycle strength?
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Frequency shifts with solar cycle
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Frequency shifts with solar cycle
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Figure 18. Frequency shift as a function of frequency, using frequencies from 1986 as a
reference. The frequency dependence was obtained by averaging over modes in the range
4 <1 € 140 in degree. Data from 1988 are denoted by circles, data from 1989 by squares.
From Woodard and Libbrecht (1991).




Localized Global Frequency Shifts
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High-degree Frequency Shifts

Fractional Frequency Shift for 3 Apr- 10 Apr 1999

 Mode frequencies
are higher in
active regions

e (Hindman et al,




What Causes Frequency Shifts?

o Shifts are obviously well correlated in time
and space with surface magnetic activity,
but what's the mechanism?

Magnetic fields:

— Chromospheric

— Photospheric (fibril)

— Submerged at tachocline
Kuhn — temperature

Dziembowski and Goode 2005 — geometry




Mode Energy and Width
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Summary

Mode frequency, lifetime, amplitude are
affected by surface magnetic features.

Mechanism of frequency changes still
unclear, but seems to be close to surface.

Energy supplied to mode may be invariant,
suggesting features affect damping only.

Amplitude, lifetime changes related to
mode absorption by sunspots?




The Search for Subsurface
Structural Changes

o Pattern of frequency shifts Is consistent
with near-surface effects.

o Surface layers are poorly resolved,

modeled.

e Surface effects liable to mask more subtle
changes in deeper layers.




Search for Structural Change
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e Antia et al
2001 —
sound speed
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Search for Structural Change

Eff-Darwich
et al 2002 —
upper limit of
3e-5on
stratification
change at
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Subsurface Structure Changes?
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Radial variation as a function of the fractional radius, obtained as a solution of the inversion of f-mode
frequencies by a least-squares regularization technique. The reference year is 1996. The error bars are
the standard deviation after averaging over a set of random noise added to the relative frequencies.
The averaging kernels for this inversion are well localized between 0.985 and 0.996, with a typical half-
width of 0.003.




Subsurface Structure Changes?

e Basu & Mandel
(2004), Verner,
Chaplin & Elsworth
(2006) — evidence for
solar-cycle change in
amplitude of He
lonization zone
signature (0.98R)
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Subsurface Structure Changes
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Conclusions

Helioseismology reveals changes in
dynamics deep in the convection zone.

Improved knowledge of convection-zone
dynamics may help predict future cycles.

Solar activity at the surface influences
mode parameters.

Detection of interior structural change Is
still difficult.




