Solar Magnetic Field Measurements

Yang Liu and J. T. Hoeksema Stanford University

Outline

Solar magnetic field measurements;

- Modeling magnetic field in solar corona and heliosphere;
- Evolution of solar active regions;
- Long-term variation of magnetic field in the Sun;
- **SDO/HMI**

Solar magnetic field measurement

By courtesy of J. M. Borrero

7/9/2008

Solar magnetic field measurement (photosphere)

Vector magnetic field of AR10930 taken by Hinode (Courtesy: M. Georgoulis)

7/9/2008

the Space Environment

Solar magnetic field measurement (chromosphere)

Metcalf et al. 2005

The First 'Vector' Coronal Magnetogram by SOLARC at U. of Hawaii, 2004 (Courtesy: H. Lin)

Transverse field orientation

Longitudinal Field Strength

Contour plot of the line-of-sight magnetogram over-plotted on the SOHO/EIT FeXVI 284 A image. The contours are 5G, 3G, and 1G.

Modeling magnetic field in the corona and heliosphere

- Various models and techniques.
 - Potential field model;
 - Linear force free field model;
 - Non-linear force free field model;
 - MHD simulations.

Coronal field extrapolation in active regions (NL

Metcalf et al (2008)

Coronal/Heliospheric field extrapolation (potential field source surface (PFSS) model)

 $\nabla^2 \psi = 0$

where,

$$\Psi(r, \theta, \phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left[A_{lm} r^{l} + B_{lm} r^{-(l+1)} \right] Y_{lm}(\theta, \phi)$$

Coefficients A_{lm} and B_{lm} are determined from the *boundary conditions*.

Schatten, Cosmic Electrodynamics, 2, 232, 1971. 7/9/2008

From Arge 2005.

Coronal/heliospheric field (MHD simulation)

Solar eclipse on March 29, 2006. Prediction was done by Linker et al at Science Application International Corporation.

SAIC Prediction 03/24/2006 - Solar North

Magnetic Field Lines (MHD Model) Polarization Brightness (MHD Model)

Eclipse (Williams College)* & SOHO LASCO C2 Images

Comparison of MHD and PFSS

From Riley et al, 2006, ApJ.

Evolution of magnetic field in active regions

Solar Variability, Earth's Climate and the Space Environment

7/9/2008

Evolution of magnetic field (Emerging of an active region)

Evolution of active regions

Evolution of active regions

12:00UT January 16 2001

Courtesy: J. Zhao

Solar Variability, Earth's Climate and the Space Environment

7/9/2008

Magnetic field variation (MHD modeling)

Courtesy: K. Hayashi

Evolution of polar field (southern pole).

Polar field reversal (from MDI observation).

Key: Lt.Solid = North; Dashed = -South; Med.Solid = Average: (N-S)/2; Hvy.Solid = Smoothed Average

HMI/SDO

• Observables:

- Full disk Doppler velocity with a resolution of 1 arcsec;
- Full disk light-of-sight magnetograms;
- Full disk continuum intensity; and
- Full disk vector magnetograms.

Doppler Velocity	
Cadence	45 s
Precision	13 m/s
Zero point accuracy	0.05 m/s
Dynamic range	±6.5 km/s
Line-of-Sight Magnetic Flux	
Cadence	45 s
Precision	10 G
Zero point accuracy	0.05 G
Dynamic range	± 4 kG
Continuum Intensity	
Cadence	45 s
Precision	0.3%
Accuracy pixel to pixel	0.1%

HMI Observables

Vector Magnetic Field	
Cadence	90 s
Precision:	
Polarization	0.22%
Sunspots (1kG< B <4kG) *	
B	18G
Azimuth	0.6°
Inclination	1.4°
Quiet Sun (0.1kG< B <2kG) *	
B	220 G
Total flux density	35 G
Azimuth	15°
Inclination	18º

HMI Science Analysis Plan

HMI Vector Field Data Flow

HMI Science Production Plan: vector B

 Quick-look data products (almost in real time): mostly used for helping operating instruments and forecasting space weather.

Science data products:

- Standard data products: routinely completed for all data on regular cadence. Serve as monitor or reference to meet basic research needs.
- On-demand data products (for most cases): Completed for small fraction of data when interesting things happen or whenever requested.
- On-request data products: Completed when system resources allow.

HMI Production Plan: vector B (detail)

Quick Look data:

- One minute (Doppler cadence, 50 s)
 - 1-minute line-of-sight velocity;
 - 1-minute line-of-sight magnetic field (either radial or line-of-sight);
 - 1-minute continuum intensity;
 - 1-minute indices for solar activity computed by TBD algorithm;
- 10-minute (fastest vector field cadence averaged over 6 cycles);
 - 10-minute global quick-look inversion;
 - Indices for patches computed from 10-minute field values;
- 1-hour
 - Synoptic maps of radial B at lower resolution (TBD; probably 1 degree);
 - Vector field updated only in patches.
- 6-hour
 - Quick-look full disk disambiguated vector field.

Science data products:

- Standard:
 - One-minute
 - Signed line-of-sight B on full disk;
 - Magnetic line-of-sight velocity on full disk;
 - Continuum intensity on full disk.
 - 10-minute
 - Inverted B on full disk;
 - Disambiguated vector field on selected patches.
 - 3-hour
 - Disambiguated vector field on full disk;
 - Some higher level produc
- On demand:
 - 3-second level 1.5 filtergrams;
 - 3-minute spatially binned, disambiguated vector field patches;
 - 6-minute disambiguated patches;
 - 10-minute full disk disambiguated vector field;
 - Some higher level data products.
- On request
 - 100-second disambiguated patches;
 - 100-second IQUV;
 - Higher level data products;
 - Anything else.

7/9/2008