Variability of UV-vis-IR solar irradiance from GOME and SCIAMACHY for use in GCMs

J. Pagaran, M. Weber, K. Bramstedt, J. Burrows IUP, Bremen, Germany

N. Krivova, and S. Solanki MPI Katlenburg-Lindau, Germany

> L. Floyd NRL, USA

Deutsche Forschungsgemeinschaft

ÐFG

MONTANA STATE UNIVERSITY SVECSE 1-6 June 2008 Mountains & Minds

background image from spacecenter.dk

Summary and Recommendation

Objective:

Estimate the best realistic TOA incoming radiation at

(1) solar min and (2) solar max conditions --- 11-year spectral dependence

Modeling: step-by-step illustration

UV parametrization @ 310- 320 nm

iup

 $\text{Ratio} = \frac{I_{\text{data}}(\lambda, t)}{\text{Pol}(t)}, \frac{I_{\text{data}}(\lambda, t) - \text{Res}}{\text{Pol}(t)}$

after parametrizing all 143 10-nm intervals

Validation: spectral aspect

iup

Validation: temporal aspect

iup_

Validation: temporal aspect $\begin{array}{c} a(\lambda) \\ b(\lambda) \\ daily TSI values \end{array} \qquad TSI_{j} = \int_{240 \text{ nm}}^{1670 \text{ nm}} I(\lambda, t_{j}) \ d\lambda \\ t_{j} \in \text{satellite era} \end{array}$									
TSI record	Mean value (W m ⁻²)	Standard deviation (W m ⁻²)	Correlation with TIM (2003-2006)	Slope per year (W m ⁻²)					
TIM	1360.98	0.579	1.	- 0.182					
PMOD	1365.76	0.573	0.9964	- 0.134					
ACRIM	1366.09	0.582	0.9829	- 0.261					
Lean (model)	1365.95	0.479	0.9634	- 0.069					
this work	1232.62	0.523	0.9186	- 0.038					

Table of values from Lean, NRL

UV contribution to 11-year Δ **TSI**

iup

vis-IR contribution to 11-year Δ TSI

iup

18

Radiation intervals for GCMs

iup

No. of modeled						
Band name No. of or calculated intervals						
Wavelength interval	intervals	SCIA	GOME	SUSIM	SIP	SIP (Solar2000)
Lyman α						from Tobiska, SpaceWx
121.5 nm	1 point	0	0	1	1	
Schumann-Runge						
125 – 205 nm	4 bands	0	0	4	4	
Herzberg continuum						
206 – 243 nm	15	0	0	15	15	
Hartley bands						
243 – 278 nm	10	10	10	10	10	
Huggins bands						
278 – 363 nm	18	18	18	18	18	
Chappuis band						
407 – 683 nm	1	1	1	0	0	
Total	49	29	29	48	48	Method
						A 11-yr extrapolation
Method		Α	Α	В	В	B direct ratio

Radiation intervals for GCMs

iup_

Summary and Recommendation

- * A simple irradiance model parametrizes GOME and SCIAMACHY observed solar variations
 - using Mg II (faculae brightening) and PSI (sunspot darkening)
- Using the simple model,

• we estimate the 11-yr solar cycle variability radiation intervals that are relevant for GCMs

after doing model validations:

* reconstructed daily spectra with SUSIM, SIM & SIP (within 5%)

* reconstructed TSI and correlate with TIM

(slope comparable with Lean's model)

* 11-year contribution to Δ TSI with SUSIM & SATIRE

(large difference at 300-400 nm)

We recommend that GCMs use our estimates of 11-year variability

to improve sensitivity of solar cycle influence on climate.

Acknowledgements

SCIAMACHY is a collaboration between Germany, the Netherlands, and Belgium.

- *** Gerald Harder** and **Juan Fontenla** of LASP, University of Colorado for solar data from SIM/SORCE and from solar atmosphere model.
- **W. Kent Tobiska** of Space Environment Technologies for Solar Irradiance Platform PG v2.33.

This work is supported by

(1) DFG-CAWSES (Germany) SOLOZON

"Solar variability and ozone interaction"

(2) ISSI, Bern, Switzerland

"Solar data, interpretation, and modeling"

NTERNATIONAL SPACE SCIENCE NSTITUTE

pagaran@uni-bremen.de Observed solar variability from GOME and SCIA for GCMs

Institut für Umweltphysik

iup_

00 200 1 COSPAR 18-25 July 2010 **Bremen, Germany**