An Overview of the Impact of Energetic Particle Precipitation (EPP) on the Mesosphere and Stratosphere

Charles Jackman & Dean Pesnell

NASA Goddard Space Flight Center, Greenbelt, MD

International Workshop on Solar Variability, Earth's Climate and the Space Environment Bozeman, Montana – June 4, 2008

Acknowledgments:

Cora Randall

University of Colorado, Boulder, CO

Howard Singer

NOAA Space Weather Prediction Center, Boulder, CO

Janet Kozyra

University of Michigan, Ann Arbor, MI

Manuel López-Puertas

Instituto de-Astrofisica de Andalucia, Granada, SPAIN

Eric Fleming

NASA Goddard Space Flight Center, Greenbelt, MD

Daniel Marsh, Francis Vitt, and Rolando Garcia

National Center for Atmospheric Research, Boulder, CO

Scott Bailey

Virginia Polytechnic Institute, Blacksburg, VA

Outline

I. What is EPP?

II. EPP-produced HO_x

III. EPP-produced NO_x

IV. Ozone impacts

V. Conclusions

Energetic Particle Precipitation

Electrons [and bremsstrahlung]

Auroral (~1-30 keV) Medium energy (~30-300 keV) High energy (~300-3000 keV)

Solar Protons

Medium to High energy (~1-300 MeV)

Earth's Magnetosphere

magnetosheath

magnetopause

cusp

bow shock

Medium & high energy electrons Auroral electrons neutral sheet

magnetotail

lobes

Energetic Electron Precipitation

Electron Precipitation

The South Atlantic Anomaly – weak field – all electrons → low latitude [~0-30°S geom. lat., ~0-45°E geom. lon.] This map shows the SAA in red using electron fluxes from ROSAT. The electron energies must be high enough to cause the extension under Africa and far south of the traditional area.

Solar Proton Events (SPEs)

Protons mostly enter through the magnetotail and precipitate in the polar cap

Electron or Proton Energy Deposition into Atmosphere

 $N_2^{\ +}, N_2^{\ *}, N^+, N, N^*, O_2^{\ +}, O_2^{\ *}, O^+, O, and O^*$ produced

Atmosphere acts as an energy filter

Energetic Particle Precipitation

Energetic Particles can Produce HO_x and NO_x: <u>Both of which can destroy Ozone</u>

HO_x recombines quickly on the nightside and, although it was interesting to study, I'll skip to the effects of NO_x, which can accumulate in the polar winter stratosphere

III. EPP-produced NO_x

Energetic Particles Enhance NO_x (N, NO, NO₂)

- NO_x constituents are produced by primary electrons and protons and associated secondary electrons dissociating N₂
 - Short- and long-term effects as NO_x constituents can last for weeks
- Production of 0.33 2.5 N atoms/ion pair estimated
- ~1.25 N atoms/ion pair is reasonable

 1960s – Thermospheric NO production (electrons, EUV, X-rays) proposed & measured.

- 1960s Thermospheric NO production (electrons, EUV, X-rays) proposed & measured.
- 1970s Downward transport (especially in winter) of thermospheric NO production to middle atmosphere proposed. Relativistic electron precipitation (REP) impact first proposed.
- 1980s Further quantification (including observations) of downward transport of thermospheric NO production by electrons proposed. More REP work.

- 1990s REP effects modeled in atmosphere.
 Diffuse aurora & medium energy electron effects proposed.
 - Energetic electron precipitation (EEP) first used to define all electron impact.

1990s – REP effects modeled in atmosphere.
 Diffuse aurora & medium energy electron effects proposed.

Energetic electron precipitation (EEP) first used to define all electron impact.

 2000s – Observations (ACE, GOMOS, MIPAS, HALOE, POAM II/III, ILAS-II) show evidence of downward transport (especially in winter) of thermospheric NO production to middle atmosphere.

Solar Protons Enhance NO_x (N, NO, NO₂)

 1970s – Mesospheric & stratospheric NO_x production proposed from solar protons.

Solar Protons Enhance NO_x (N, NO, NO₂)

- 1970s Mesospheric & stratospheric NO_x production proposed from solar protons.
- 1980s & 1990s Mesospheric & stratospheric NO_x production observed & modeled from solar protons.
- 2000s Mesospheric & stratospheric NO_x (NO, NO₂) and other NO_y (HNO₃, N₂O₅, CIONO₂) constituents observed (MIPAS, HALOE, GOMOS) & modeled from solar protons.

MIPAS NO_x (NO+NO₂) in 50-55 km (Northern Hemisphere)

Lopez-Puertas et al. [2005a]

MIPAS NO_x (NO+NO₂) in 50-55 km (Northern Hemisphere)

Enhanced by Oct. 2003 Solar Proton Event

Lopez-Puertas et al. [2005a]

Relative Electron Spectrum, L~3

