Observations of the Sun's corona

Katharine Reeves Harvard-Smithsonian Center for Astrophysics (with thanks to the Hinode/XRT team)

Outline

- 1. Introduction The Sun's corona in X-rays
- 2. X-ray observations of the Sun
- 3. Active region morphology
- 4. Active region thermal structure
- 5. Connections between the corona and the solar wind
- 6. Evidence for reconnection in flares and CMEs
- 7. Concluding remarks

The X-ray Sun

visible light

magnetic field

Hot corona emits X-rays

Solar cycle

DAILY SUNSPOT AREA AVERAGED OVER INDIVIDUAL SOLAR ROTATIONS

http://science.msfc.nasa.gov/ssl/pad/solar/images/bfly.gif

NASA/NSSTC/HATHAWAY 2006/03

Solar cycle variations

image from http://www.lmsal.com/SXT/img/The_Changing_Sun.gif

Hinode's X-Ray Telescope

Magnetic fields

Sigmoid structure in ARs

McKenzie & Canfield, A&A, 2008

Bald patch model

Sigmoid evolution

QuickTime[™] and a Photo - JPEG decompressor are needed to see this picture.

Coronal thermal structure

AR thermal structure

Reale et al., Science, 2007 0.06 0.05 Combined filter ratio 0.04 0.03 0.40 0.02 0.01 0.00 0.04 6.4 6.6 6.0 6.2 6.8 log T[K]

Cool material lowers ratio

green - XRT CIFR yellow - TRACE (1MK)

Reale et al., Science, 2007

Active region outflows

Sakao, et al., Science, 2007

Statistics:

- 60-100 jets per day
- mean velocity 160 km/s, velocities up to 1000 km/s observed
- mean height 5 x10⁴ km
- mean lifetime 10 mins

from: Savcheva et al., PASJ, 2007

QuickTime[™] and a Photo - JPEG decompressor are needed to see this picture.

Solar flares

Al

Reconnection in flares

Shrinkage observations

Shrinkage trajectories

Comparison with theory

Supra-arcade downflows

TRACE 195 Å

XRT Thin Be

Theoretical picture

2. Evacuated tube shrinking through current sheet appears as a void

1. Reconnected flux tube shrinks throug current sheet.

3. Chromospheric evaporation fills the shrinking flux tube

Very similar to field line shrinkage, except that the shrinking flux tube is evacuated, and shows up as a void in observations.

Coronal mass ejections

STEREO movies courtesy A. Vourlidas

Coronal mass ejections

STEREO movies courtesy A. Vourlidas

Different wavelengths

Hinode/XRT: 5-10 MK

TRACE: 1MK

Concluding remarks

- X-rays are very important for investigating the structure, dynamics and thermal properties of the corona.
- X-rays are also important for understanding the interactions between the corona and the Earth via CMEs and the solar wind.
- Stay tuned to Solar cycle 24 for more exciting Hinode results!

New cycle region

