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Outline
�Why is modeling of the solar dynamo so difficult

– Limitations of different modeling approaches
– Observational constraints

� Incomprehensive overview of solar dynamo models
– Overshoot dynamos
– Distributed dynamos

• Interface dynamos
• Flux transport dynamo models

�Current state of 3D simulations
�Solar-Stellar connection



Why is it so difficult to model the solar 
dynamo?

�3D simulations:
– Large scale solar dynamo simulation not feasible 

yet – but significant progress over past couple 
years

– Too large separation in time and length scales
(large Re, Rm, strong stratification) 

• Geodynamo: no stratification, Rm < 1000!

– Solar dynamo: some ingredients, no large scale 
cyclic dynamo

– Fast rotating solar-like stars: large scale dynamo 
action (B. Brown. M. Miesch, J. Toomre) 



Why is it so difficult to model the solar 
dynamo?

�Mean field models:
– Focus on large scale field (in most cases 

axisymmetric component) 
• Significant reduction in computational cost

– Main drawbacks
• Convective (turbulent) induction effects have to be 

parametrized
• No general recipe to derive these effects that is 

guaranteed to yield more than qualitative results
• Require in general some tuning – Do we get the right 

answer for the right reason? Robustness of results?

– Rule of thumb: Look for robust features



Why is it so difficult to model the solar 
dynamo?

�Major dynamo ingredients are identified
– Poloidal -> toroidal field

• Differential rotation (observed) 

– Toroidal -> poloidal field (α-effect) 
• Babcock-Leighton (observed) 
• Convective (uncertain) 
• Tachocline (uncertain) 

– Transport
• Meridional flow (top layers of CZ) 
• Turbulent diffusivity (photosphere) 
• Turbulent pumping (uncertain) 

�Relative contribution unknown, can 
observations help? M.Miesch

M. Dikpati



Solar dynamo – observational constraints
�Butterfly diagram

– 11 year dynamo period
– Equatorward propagation
– Weak overlap between cycles
– Activity in low latitudes

• Does not necessarily rule out field 
in high latitudes (provided field is stable there) 

�Poloidal surface field
– Polar field strength
– Poleward migration
– Phase relation to toroidal field

• Result of Joy's law (related to dynamics of rising flux tubes) 
• Weak constraint on dynamo mechanism 

D. Hathaway



Solar dynamo – observational constraints
�Hemispheric preference of helicity

– Sign of α-effect?
– Formation of flux tubes?

�Hemispheric coupling, symmetry across equator
�Total flux of AR in 11 year cycle ~1025 Mx

– ∆θ~30 deg, ∆r~Hp, B~10kG  -> φ~1025 Mx
– Emag= ¼ Bφr~1039 ergs ~ Ediffrot

�Non-axisymmetric constraints
– Active longitudes

�Predictability?



Solar dynamo – key questions
�Role of tachocline

– Overshoot/tachocline dynamo
• Ω and α effect in tachocline

– Distributed dynamo
• Interface dynamo

– Ω effect in tachocline
– α effect in convection zone

• Convection zone dynamo
– Ω effect, α effect in convection zone
– Base of CZ/Overshoot: Flux storage

�Role of meridional flow
– Surface: essential ingredient
– Bulk of CZ: flow structure, magnetic diffusivity

R. Howe



Solar dynamo – key questions
�Origin of the alpha-effect

– Convective α effect (classic mean field theory) 
– Tachocline instabilities (hydro + magnetic) 
– Babcock-Leighton mechanism 

• Rising flux tubes (magn. Buoyancy) + Coriolis force
• Tilt angle of active regions (only observed α effect) 

�What determines flux and field strength of dynamo
– Geometric constraints (similar for other stars, 

independent of rotation rate) 
– Differential rotation
– Potential energy of stratification ('explosion of flux 

tubes') 



Overshoot/tachocline dynamos
�Strong radial shear (energy source) + stable 

stratification (storage of strong magnetic field) 
�Strong radial shear + alpha effect

– Latitudinal propagation (with neg. α) 
• Equatorward in low latitudes
• Poleward in high latitudes

– Strongest activity in high latitudes
• Not necessarily a problem if field is more stable in high 

latitudes

– Multiple overlapping activity belts
• Intrinsic problem of all dynamos in thin shells
• Major problem, contradiction to butterfly diagram





Distributed dynamos
� Interface dynamos (Parker,Charbonneau,MacGregor) 

– Ω effect in tachocline, α effect in convection zone
– Proposed by Parker (1993) to overcome problems 

with too strong α quenching
• Strong toroidal field in tachocline
• α effects operates on weak poloidal field in CZ
• Diffusive coupling

– Overlapping cycles typically not a problem (shell is 
sufficiently thick) 

– Solutions very sensitive to details such as α profile 
and location and tachocline thickness



Flux transport dynamo
(Durney,Choudhuri,Schuessler,Dikpati,Nandi,Charbonneau,Gilman,Rempel) 

�Motivation:
– Meridional flow plays essential role in the 

evolution of the surface magnetic field
– Bulk of convection zone has little radial shear

• Impossible to have dynamo waves propagating in 
latitudinal direction

– Meridional return flow of a few m/s expected at 
base of CZ from continuity arguments

• Similar to propagation speed observed in butterfly 
diagram

• Overturning time scale ~ cycle

-> Advection dominated dynamo



Babcock-Leighton flux transport model
� Differential rotation

– Toroidal field 
production

– Stored at base of CZ

– Rising flux tubes

� Babcock-Leighton α
effect
– Tilt angle of AR
– Decay active 

regions -> poloidal 
field regeneration

� Transport of magnetic 
field by meridional flow



Solution properties
� Butterfly diagram

– Equatorward propagation

– Weak cycle overlap

– Peak amplitudes in mid latitudes

– Sometimes also polar branch

� Surface field

– Correct phase relation

– Polar field in general too strong
• Toroidal / polar field  ~ 50

– 10kG -> 200G

� Solution symmetry

– Quadrupole in general preferred

– Difference between dipole and 
Quadrupole growth rate very 
small

Dikpati & Charbonneau (1999) 



Tachocline α + strong η contrast
� Butterfly diagram

– Activity in low latitudes < 35 deg

– Peak around 20 deg

� Surface field
– 3 – 4 orders of magnitude 

weaker than toroidal field

� Solution symmetry
– Dipole preferred, however 

difference to quadrupole small

� Solution very sensitive to 
profile, amplitude and location 
of tachocline alpha effect!

Dikpati et al. (2004) 



How justified are the key assumptions ?
�Meridional flow

– 1 dominant flow cell in each hemisphere
• Second flow cell in high latitudes OK
• Several flow cells in radius problematic

– Lorentz force feedback on meridional flow 
negligible

• Kinetic energy of meridional flow very small, non-trivial 
assumption

– Advective transport dominates over turbulent 
transport

• Low magnetic diffusivity < 1011 cm2/s
• Typical mixing length estimate 10 – 100 times larger!



Meridional flow structure
� Poleward at surface (observed) 

� Return flow not observable 
through helioseismology 

– 50 Mm depth still poleward 
(Gizon & Rempel 2008) 

� Mass conservation

– Equatorward at base

� Theory: 

– Meanfield models
• Typically equatorward

– 3D simulations
• Most recent (high res.): 

Equatorward
• Low resolution runs: 

Multiple flow cells

� Overall: Equatorward flow at 
base of CZ very reasonable 

3D simulation
Miesch et al. (2008) Meanfield model

Rempel (2005) 



Lorentz force feedback: Non-kinematic flux-
transport dynamo

�Axisymmetric MHD equations
�Differential rotation model:

• Parameterization of turbulent angular 
momentum transport drives DR and MF

• Entropy perturbation originating in tachocline 
causes deviation from Taylor-Proudman state

�Dynamo model:
• Flux-transport dynamo, only Babcock-Leighton 

α-effect
• Macroscopic Lorentz-force feedback on DR 

and MF





Radial surface field

Meridional flow at
base of CZ

Torsional oscillation
at surface



Energy balance of solar flux-transport 
model

Stratification (internal+gravity) energy

Λ
Effect
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Energetics of dynamo
� Dynamo saturates through reduction of DR

– Saturation field strength ~ 10 to 15 kG

– Magnetic flux @ BC ~ 1024 Mx

� Feedback on meridional flow not significant for B < 15 kG

– Operation of flux-transport dynamo not significantly impacted

– Tachocline α-effect allows for stronger toroidal field, but 
meridional flow cannot transport it anymore

� About 1% Lsun required to maintain differential rotation and 
meridional flow 

� Dynamo converts ~ 0.1% Lsun (~ 10% of flux required to

maintain DR) 

– Close to observed irradiance variation (coincidence?)



The role of turbulent transport
� Parametrized in mean field models through scalar magnetic 

diffusivity:
– η < 1011 cm2/s (advection dominated regime) 
– η ~ 1/3 v Hp (1012 – 1013 cm2/s) 
– Flux transport dynamo requires at least factor of 10 less 

magnetic diffusivity to operate
• Not impossible, but also not evident form any theoretical or 

numerical investigation
• Theory of DR:  ν ~ 1/3 v Hp quire reasonable

� Additional turbulent transport
– Turbulent pumping (downward and equatorward) 

• Can partially compensate for effects of high diffusivity
• Advection like behavior without bulk flow of plasma 

(amplitude comparable to meridional flow) 
• Substantial effect on flux transport dynamos (Guerrero, Dal 

Pino 2008) 



Summary: Flux transport dynamo
�Babcock-Leighton flux transport dynamo 

– most robust and promising mean field scenario for 
solar cycle

– Becomes more sensitive to details if fine tuning of 
cycle features is pursued

�Meridional flow structure seems to be a very 
reasonable assumption (limited observations + 
theoretical investigations) 

�Can tolerate Lorentz force feedback
– Bmax< 15kG 
– 100 kG impossible to transport by meridional flow

�Unknown amplitude of turbulent transport processes 
biggest weakness



3D dynamo simulations
(Miesch, Brun, Brown, Browning, Toomre) 

� Convection zone dynamo
– Turbulent field, meanfield 

< 0.03%

� Tachocline
– Strong mean field ~10 kG

� Faster rotators (3x) 
– Strong (~ 5 – 10 kG) field in 

convection zone

– Antisymmetric over equator

– Activity confined to low 
latitudes

� No cyclic dynamo yet
– Difficult to evolve 3D runs 

for > 10 years

Miesch et al. 
(2008)

Browning et al. 
(2006)

Brown et al. (2008) 



Implications for solar-like stars
�Assume flux transport dynamo is also operating in 

other stars, what are the predictions
– Activity rotation relation-ship
– Dynamo period

�Pdyn ~ 0.1 PDR ~ 0.001 L
– Pdyn ~ 0.1 PDR: Unlikely to change with Ω
– PDR ~ 0.01 L : At best scale up ~ Ω
– Star with 10 times solar rotation at best 10 times 

more energy for dynamo
• Insufficient to explain activity-rotation relationship

– φ ~ Ω2, B ~ Ω (at least)  -> P ~ Ω3

• Change of surface topology?



Meridional flow in a nutshell

Differential rotation and meridional flow driven by Reynolds stresses:

Stationary state requires:

Rough estimate of meridional flow amplitude:

Decline of meridional flow energy with increasing omega also seen 
in 3D simulation (Brown et al. 2008) 



�Meridional flow constant with Reynolds stress scales 
up linear with Ω
– Certainly the case for slow rotators

�Fast rotators: Saturation of Reynolds stress
– Decline of meridional flow ~ 1/Ω

�Vm ~ Ω as often found in literature requires RS ~ Ω2

– very unlikely for fast rotators
�Flat cycle period, potentially increase for fast rotators
�Problem: Flow topology could change (as indicated 

in 3D simulations) 
– Multi cellular flow 

• shorter cycle period
• Flux transport dynamo might not work at all


