Update to the Babcock-Leighton Solar Dynamo and Activity Predictions

Kenneth Schatten
Ai-solutions

Outline

- UPDATE BABCOCK-LEIGHTON DYNAMO
 - 1) Shallow Dynamo
 - 2) Percolation controls small-scale motion
 - 3) Magnetic forces control large-scale motion
- PERCOLATION COMES IN TWO FLAVORS:
 - 1) Highly Superadiabatic: Convection drives like-sign Ephemeral Regions (EPRs) into sunspots
 - 2) Normal:

Normal T structure: field concentrations disperse: spots-> faculae / plage

MODELING:

Cellular Automata Modeling – relate to observations & solar dynamo

PREDICTION:

Solar Cycle #24 Rz~75; F10 ~125 in ~2012-3

Babcock-Leighton Solar Dynamo

Magnetic Carpet & Percolation

Above the Photosphere

From Lockheed Group

Below the Photosphere:

In regions of <u>high superadiabaticity</u>, like fields drawn together

Parker (1984) field sequestered into fibrils by convective flow: field drawn into tight bundles

In highly superadiabatic environment, like-field drawn together by percolation FIELD

Percolation Allows Field to Separate from the Flow – Remain Shallow Falling Leaf Instability

Superadiabatic Temperature Gradient: Large in Top Layers

FIG. 3.—Amount of ionized hydrogen α , its gradient, and the adiabatic exponent Γ_1 are shown (left panel) throughout the convection zone. The second panel shows the "normal" temperature structure of the convection zone. The shaded area represents the superadiabatic "free energy" available to drive instabilities. Within this central zone, the material is "conditionally unstable," depending on the amounts of neutral vs. ionized hydrogen present. A general downflow motion (third panel) and upflow motion (right) affect the superadiabatic gradient as shown. The downflow motion enhances the temperature gradient so that more free energy is available (shaded area) for instabilities, and "ion hurricanes" develop. The upflow motion (right panel), however, reduces the free energy available for instabilities, and ion hurricanes are less likely to develop.

ZAS.

Overview – Shallow Dynamo:

A) and B) – Superadiabatic Percolation C) Normal Percolation

Overview – Shallow Dynamo

Like Babcock-Leighton, but with 1) EPRs and 2) motion from B forces

Development of Fields During an Odd # Cycle:

NH Following Flux=>NH pole; NH Preceding Flux=>SH pole Vice Versa for SH Fluxes, and Even # Cycles

Superadiabatic Percolation Model

10% Fill, Random Fields, of Two Signs amidst null field

3 motion steps with Energy reduction

7 motion steps with Energy reduction

30 motion steps with Energy reduction The Percolation Process

10% Fill, Random Field, of Two Signs in a null Background

25 motion steps with Energy reduction

200 motion steps with Energy reduction

1000 motion steps with Energy reduction

The Percolation Process

Percolation

Time Series of Superadiabatic Percolation of Ephemeral Region

Superadiabatic Percolation, Field Drift, and Normal Percolation into Unipolar Magnetic Regions (UMRs)

Modeling and Observations

Modeling and Observations

D SUPERSYNOPTIC & SYNOPTIC MAPS
OF THE SUN'S MAGNETIC FIELDS:
SOLAR CYCLE #22

MODELED BIPOLAR MAGNETIC REGIONS (BMRs): PERCOLATION WITH SUBADIABATIC GRADIENT+ DRIFT FROM DIPOLE FIELD + DIFFERENTIAL ROTATION

400 & 100 Year Modeling

Polar Fields vs. Time

Time, Years

Different Longitudes, Both Polar Fields

Time, years

How Spot Flux Imbalances Form (Why spots are not all equal bipoles)

SODA (Solar Dynamo Amplitude) Index

Schatten Prediction: Weak Solar Cycle 24

Use of the idea that the Sun's polar field is a precursor for the next cycle's activity level [Schatten et al. (1978)]; Svalgaard et al. (GRL, 32, L01104, 2005); Schatten (GRL, 32, L21106, 2005)

F10.7 Observations and Predicts

Geomagnetic Activity - Sunspot Correlation

Conclusions

- UPDATE BABCOCK-LEIGHTON DYNAMO:
 - We update with 3 ideas:
 - 1) Shallow Dynamo, 2) Percolation in two flavors, and
 - 3) Magnetic forces help drive faculae/plage towards poles
- PERCOLATION IN TWO FLAVORS:
 - 1) Highly Superadiabatic:
 - Convection drives like-sign Ephemeral Regions (EPRs) into sunspots
 - 2) Normal:
 - Normal T structure: field concentrations disperse: spots-> faculae
- MAGNETIC FORCES: Rather than fields moving towards poles via diffusion/meridional transport, we suggest magnetic forces, mB, on subsurface field elements play a prominent role— yield dynamo
- MODELING: Cellular Automata Modeling seems to fit solar dynamo
- PREDICTION: Solar Cycle #24 Rz~75; F10 ~125 in ~2012-3

Backup

LONG-TERM SOLAR OBSERVATIONS

International/Zurich Sunspot Number vs. Year

SODA index vs time, years

Babcock's shallow dynamo view

Babcock 1961, ApJ, 133, 572

Why Field Separates From Flow: Leaf Instability, and Stays Near Photosphere

