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Outline

UPDATE BABCOCK-LEIGHTON DYNAMO
1) Shallow Dynamo
2) Percolation controls small-scale motion

3) Magnetic forces control large-scale motion

PERCOLATION COMES IN TWO FLAVORS:
1) Highly Superadiabatic:
Convection drives like-sign Ephemeral Regions (EPRs ) into sunspots

2) Normal:
Normal T structure: field concentrations disperse: spots-> faculae / plage

MODELING:

Cellular Automata Modeling — relate to observations & solar dynamo

PREDICTION:

Solar Cycle #24 Rz~75; F10 ~125 in ~2012-3



Babcock-Leighton Solar Dynamo

Physical basis for selarand
geomagnetic precursortechniques
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Magnetic Carpet & Percolation

Below the Photosphere:
In regions of high superadiabaticity,
like fields drawn together

Above the Photosphere

Parker (1984) field sequestered
into fibrils by convective flow:
field drawn into tight bundies
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In highly superadiabatic environment,
like-field drawn together by percolation
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Percolation Allows Field to Separate

from the Flow — Remain Shallow

Falling Leaf Instability

Leaf Instabliily
of Obstacile
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Flow can be diverted around field.
Flow goes deep, but field can
remain shallow!
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Superadiabatic Temperature
Gradient: Large in Top Layers
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FiG, 3.—Amount of ionized hydrogen a, its gradicnt, and the adiabatic exponent I are shown {/eff panel ) throughout the convection zone. The second panel shows the “ normal” temperature structure of
the convection zone, The shaded area represents the superadiabatic * free energy™ available to drive instabilities. Within this central zone, the material is “conditionally unstable,” depending on the amounts of
neutral vs. ionized hydrogen present. A gencral downflow motion | third panel) and upflow motion (right) affect the superadiabatic gradient as shown, The downflow motion enhances the temperature gradient
so that more free energy is availahle (whaded area) for instabilities, and “jon hurricanes” develop. The upflow motion ( right panel), however, reduces the frec energy available for instabilities, and ion
hurricanes are less likely to develop.



Overview — Shallow Dynamo:

A) and B) — Superadiabatic Percolation

C) Normal Percolation
A] GROWTH: EPRs TO SPOTS
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B) GROWTH: TO SPOTS/BMRS
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C) DECAY: TO FACULAE/PLAGE
EPRs 1 Photosphere
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Overview — Shallow Dynamo

Like Babcock-Leighton, but with 1) EPRs and 2) motio  n from B forces
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Conversion of BMR to
Unipoles in UMRs

Development of Fields During an Odd # Cycle:

NH Following Flux=>NH pole; NH Preceding Flux=>SH pole
Vice Versa for SH Fluxes, and Even # Cycles



Superadiabatic Percolation Model

_ 10% Fill, Random Field, 25 moftion steps
3 motion steps of Two Signsin a with Energy reduction
with Energy reduction null Background

O

10% Fill, Random Fields,
of Two Signs amidst
null field

7 motion steps 30 motion steps 200 motion steps 1000 motion steps
with Energy reduction  with Energy reduction with Energy reduction  with Energy reduction

The Percolation Process The Percolation Process



Percolation
Superadiabatic Super + Drift —» Normal + Drift

Superadiabatic Percolation, Field Drift, and Normal

Time Series of Superadiabatic Percolation into Unipolar Magnetic Regions (UMRS)
Percolation of Ephemeral Region




Modeling and Observations

Percolation of Ephemeral Regions
in an External Subsurface Field
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Modeling and Observations
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D SUPERSYNOPTIC & SYNOPTIC MAPS MODELED BIPOLAR MAGNETIC REGIONS (BMRs):
OF THE SUN’S MAGNETIC FIELDS : PERCOLATION WITH SUBADIABATIC GRADIENT+
SOLAR CYCLE #22 DRIFT FROM DIPOLE FIELD + DIFFERENTIAL ROTATION



Polar Fields, arbitrary units

Magnetic Field, arbitrary
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400 & 100 Year Modeling

Polar Fields wvs. Time
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How Spot Flux Imbalances Form
(Why spots are not all equal bipoles)

2 4
Superadiabatic Percolation of EPRs
in a Unipolar Magnetic Region (UMR)
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Superadiabatic Percolation of EPRs
at a (UMR/Sector) Magnetic Boundary



SODA (Solar Dynamo Amplitude) Index

SODA index vs time, years

= = Toroidal proxy (radio flux) = = DPolar Field (soda units) SODA index
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Schatten Prediction: Weak Solar Cycle 24

Use of the idea that the Sun’s polar field is a precursor for the

next cycle’s activity level [Schatten et al. (1978)]; Svalgaard et al. (GRL,
32, L01104, 2005); Schatten (GRL,32,L.21106, 2005)

F10.7 Observations and Predicts

—e— Observations — — Predicted in Advance

300

250

200

150

R=do Hux, F10.7

50




250

N
.O
- O

&)
O

100

Maximum Sunspot # (Rz)

50

Geomagnetic Activity - Sunspot Correlation
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Conclusions

UPDATE BABCOCK-LEIGHTON DYNAMO:

We update with 3 ideas:

1) Shallow Dynamo, 2) Percolation in two flavors,a nd

3) Magnetic forces help drive faculae/plage towards poles

PERCOLATION IN TWO FLAVORS:

1) Highly Superadiabatic:

Convection drives like-sign Ephemeral Regions (EPRs ) into sunspots
2) Normal:

Normal T structure: field concentrations disperse: spots-> faculae

MAGNETIC FORCES: Rather than fields moving towards  poles via
diffusion/meridional transport, we suggest magnetic forces, mB, on
subsurface field elements play a prominent role— yie |d dynamo

MODELING: Cellular Automata Modeling seems to fits  olar dynamo

PREDICTION: Solar Cycle #24 Rz~75; F10 ~125 in ~201 2-3



Backup




LONG-TERM SOLAR OBSERVATIONS

International/Zurich Sunspot Number vs. Year
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SODA index vs time, years

Time, years

= = Toroidal proxy (radio flux) = = Polar Field (soda units) SODA index
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Babcock’s shallow dynamo view

Babcock 1961, ApdJ, 133, 672



Why Field Separates From Flow: Leaf
Instabllity, and Stays Near Photosphere

Leaf Instabliity
of Obstacie




