

Long-Term Solar Activity Reconstruction: Grand Minima and Maxima

Ilya Usoskin¹, Sami K. Solanki², Gennady Kovaltsov³

Sodankylä Geophysical Observatory, University of Oulu, Finland
 Max-Planck-Institut for Solar System Research, Katlenburg-Lindau, Germany
 Ioffe Physical-Technical Institute, St.Petersburg, Russia

Solar activity variations: telescopic sunspot number record

- 11-year solar cycle (Christian Horrebow 1770s; Schwabe 1843)
- Variable amplitude/envelope (Gleissberg 1944);
- Maunder minimum (Hivelius; Eddy 1976);
- The contemporary level is high

Solar activity in the past

Years before present

Proxy of SA: Cosmogenic isotopes

- Variable solar activity expands to the Heliosphere: solar wind, interplanetary magnetic field, interplanetary transients (CME, corotation regions), etc.
- Galactic cosmic rays are modulated by IMF, magnetic inhomogeneities, solar wind;
- Geomagnetic field partly shields the Earth (mid- and low-latitude regions) from incoming cosmic rays;
- This process is well understood and can be properly modelled (Beer, Space Sci. Rev., 2000; Usoskin et al., Phys. Rev. Lett., 2003; Solanki et al., Nature, 2004)

SN reconstruction from ¹⁴C or ¹⁰Be

e.g. Model by Solanki et al. (2002)

Sunspot number

open magn. flux

Sunspot numbers

e.g. Model by Usoskin et al. (2002a)

Modul. strength

CR intens. variations

Deposition models, paleomagnetic models

¹⁰Be: Webber & Higbie, ¹⁴C: Usoskin & Kromer

 B_{\oplus} : Yang et al. (2000), Korte & Constable (2005)

Cosmogenic isotopes in natural archives

Usoskin et al. (2002b)

Solanki et al. (2004), Usoskin et al. (2004, 2007)

Sunspot number reconstructed from ¹⁴C

Smoothed Sunspot number over 11400 yr

27 Grand minima 19 Grand maxima can be identified.

Minima cover
1880 yr ≈ 17% of time
Maxima cover
1030 yr ≈ 9% of time

Solanki, Usoskin, Kromer, Schüssler, Beer, *Nature*, 2004 Usoskin, Solanki & Kovaltsov, A&A, 2007

Sunspot number statistics

Red curve: best-fit normal distribution

Waiting time distribution

Grand minima

Grand maxima

Closer to power law (red lines) than to exponential (dotted yellow lines) → waiting time tends to show clustering of Min and Max

Durations of Minima & Maxima

Grand minima

Quasi-Bimodal

Grand maxima

Exponential

Conclusions

- The Sun spends 17% of the time in grand minima, 9% in grand maxima. Currently the Sun is in a grand maximum.
- Grand minima/maxima are not due to long-term cyclic variations but rather to stochastic/chaotic processes.
- Waiting time distribution of occurrence of grand minima and maxima deviates from an exponential distribution → typical of non-Poisson processes with, e.g., self-organized criticality or processes related to accumulation and release of energy.
- Grand minima can be classified into two different types: short minima of Maunder type and long minima of Spörer type.
- Duration of grand maxima exponentially distributed → leaving a grand maximum is a random process, unlike for grand minima

Model	χ² (DoF)	Confid. level
GSN	7.55(17)	98%
S04	2.44 (8)	97%
M05-M	20.5 (11)	4%
M05-A	4.4 (11)	95%

Ti-44 activity: measurements vs. model

Preliminary results!

New data are currently being finalized and analyzed