Solar Irradiance Variability Observed During Solar Cycle 23

Introduction

□ Solar Cycle Results for Climate Change

Solar Cycle Results for Space Weather

Tom Woods

<tom.woods @ lasp.colorado.edu> LASP / University of Colorado

Summary of Solar Cycle (SC) 23 Results

- UARS & ATLAS observed UV irradiance during SC 22 and first half of SC 23
 - Best results for 115-260 nm
 - SC variability for $\lambda > 260$ nm is smaller than 1% uncertainty
- SORCE confirms UARS-ATLAS results for λ < 260 nm and provides new results for TSI and for NUV, Visible, and IR (260 2400 nm)
 - TIM TSI is lower value (1361 W/m²)
 - New IR observations by SIM indicate IR shortterm variability is less than visible & TSI
 - Preliminary results indicate SC variability at some visible & IR wavelengths are out of phase with solar cycle trend

TIMED SEE provides new EUV observations

- Accuracy improved throughout the EUV
- Flare variability is as large as SC variability

Solar Variations Largely Driven by Magnetic Activity

> What we know best:

- Day-to-day variations
 primarily from magnetic —
 active regions
 - Dark sunspots in visible ·
 - Bright plage in UV
- Evolution of magnetic active regions drives solar cycle variations
 - Competing dark sunspots and bright faculae for TSI and visible radiation
 - Active network contribution is most important for transition region emissions

Magnetic Field

Visible (photosphere)

Ultraviolet (chromosphere, transition region)

Wavelength Dependent Contributions to Solar Variability

Layers of the Solar Atmosphere

Solar Influences on Earth

Solar Influences on Earth

Missions with Solar Irradiance Observations

2400 nm with the combination of SORCE and TIMED missions.

SORCE: A Mission of Solar Irradiance for Climate Research

SORCE Measurements

- Total Solar Irradiance (TSI)
 - Extend TSI record
 - Improve upon accuracy and stability
- Solar Spectral Irradiance (SSI)
 - 0.1-27 nm and 115-2400 nm
 - Continue UV record for λ < 400 nm
 - Start new NUV-Vis-NIR record
- Daily cadence for data products
 - March 2003 to present

SORCE TSI and SSI Data Products http://lasp.colorado.edu/sorce/

> SORCE Book Solar Physics Vol. 230, 2005

TIMED SEE: Solar Irradiance for Space Weather Research

Solar EUV Experiment (SEE)

- Solar Spectral Irradiance (SSI)
 - 0.1-27 nm in broad bands
 - 27-194 nm at 0.4-nm resolution
- Daily cadence for data products
 - February 2002 to present
 - Also have flare observations

TIMED SEE Data Products http://lasp.colorado.edu/see/

TIMED SEE Overview Paper Woods et al., J. Geophys. Res. 110, A01312, 2005

SORCE and **TIMED** Solar Irradiance Instruments

Total Solar Irradiance (TSI) - Before SORCE

(figure from Greg Kopp)

SORCE TIM Extends the TSI - Establishes Lower Value

- Fundamental determination that the Total Solar Irradiance (TSI) is ~1361 W/m², not 1366 W/m²
 - SORCE TIM has most accurate measurement (350 ppm vs. 1000 ppm)
 - Validation effort with NIST is on-going; new TSI cal. facility at LASP
 - Impacts Earth's radiation energy budget (ES want lower value anyway)

Composite TSI Time Series

> TSI variations for Solar Cycle 23:

- 0.1% for solar cycle 23
- -0.34% dip for Oct 2003 (large sunspots)
- Preliminary : TSI trend indicates -0.02% decrease from last minimum

SSI Variability Before SORCE / TIMED

SSI observations

- UARS : 115-420 nm
 - SOLSTICE
 - SUSIM
- SBUV: 200-400 nm
- ATLAS: 115-1600 nm
 - SUSIM
 - SBUV
 - SOLSPEC

Reference Solar Spectra

Thuillier *et al., Adv. Space Res., 34*, 256, 2004

Solar Cycle Results from UARS & ATLAS

- ➤ UARS & ATLAS observations in 1992-1996 period last half of SC 22
 - Woods et al., J. Geophys. Res., 1996.
 - Thuillier et al., Adv. Space Res., 2004.
 - Woods & Rottman, in Comparative Aeronomy in the Solar System, 2002.

Composite Solar Ultraviolet Time Series

≻ Lyman-α (121.6 nm) by Woods *et al.* (JGR, 2000)
 ≻ More complete UV range by DeLand *et al.*

Dark and Bright Contributions for $\lambda > 260$ nm

- Dark sunspots normally dominate photospheric emissions in the NUVvisible-NIR ranges
 - Bright plage above the sunspots dominate the chromospheric (ultraviolet) emissions such as the Mg II emission (anti-correlation with 500 nm)
- Bright faculae (active network) sometimes dominates
 - If so, then photospheric and chromospheric variations are in phase
 - This happens about once a year (during SORCE mission)

Need at least 3 parameters to model solar irradiance: Active Region (sunspot, plage) Active Network (faculae) Quiet Sun (with LT trend)

Early Estimate of 11-year Solar Cycle Variation

- In-phase variation in 2004 used as rough estimate of the 11-year solar cycle variation
 - assumes active network is primary cause of solar cycle variation
- Result suggests that the SC variation at $\lambda > 400$ nm could be described by 2 K change in photospheric temperature

Estimated Solar Cycle Variability in Energy Units

Additional Examples from SORCE SIM

- > Although more active solar conditions in 2003, best SIM data are in 2004-2007
- Jerry Harder and Juan Fontenla examined solar images and selected several dates dominated by either sunspots, facula, or active network.
- Following example uses the facula-reference example (with 27-day averages)
 - Corresponds to <F10.7> of 72 and 91, so ~12% of full cycle activity

Spectral Contributions to TSI Variability are Different

- The facula example has much more UV contribution to the TSI variation, less in visible, and much less in the IR
 - Some of the differences is due to solar variability from different time periods and some could be due to instrument degradation correction

Infrared (IR) Variations are Less than Visible

- IR is in phase with the TSI for short-term variations (solar rotation)
 - Reduced variability in the IR relative to TSI variation
 - Expected result due to H⁻ opacity being low near 1600 nm

Surprise for Infrared Solar Cycle Variations

But IR irradiance is out of phase with solar cycle

- UV decreases towards solar minimum, visible very similar to TSI
- IR result is new, *unexpected* result from SORCE SIM

What do these SIM observations tell us?

- SIM out-of-phase solar cycle results for 400-700 nm and 1000-2400 nm suggest out-of-phase temperature change in the lower photosphere.
 - Early result suggested 2 K cooler temperature for SC minimum
 - This result indicates temperature change is not uniform throughout the photosphere and even negative in deeper layers
- This is preliminary result...
 - Expect to know more as solar cycle leaves minimum
 - Trend should clarify differences between instrument degradation and solar cycle

Solar Irradiance for Space Weather

- > X-rays, EUV, and FUV ranges are important for Space Weather studies
 - TIMED SEE providing full spectral coverage (0.1 194 nm)
 - Chromospheric emissions vary the least (factor 1.1 to 1.5)
 - Coronal emissions vary the most (factor 4 to 1000)

EUV-FUV Variability Example for Solar Cycle 23

- 2007/316 for Low Activity and 2003/192 for High Activity
 - 27-day average used
 - <F10.7>₈₁ is 70.5 and 131.4
 - So ~40% of full cycle activity

> SORCE SOLSTICE:

 FUV values and variability are consistent with UARS results (ATLAS and VUV2002)

TIMED SEE:

- SEE improves EUV accuracy
- EUV variabilities are similar to AE-E (VUV2002)

New Flare Results from Irradiance Observations

- Flare variations can be larger than solar cycle variation
 - Largest flares during Oct-Nov 2003 [Woods et al., GRL, 2003]
- Total flare energy is about 10 times more than previous estimates
 - Prior estimates: total is 10-15 times the GOES X-ray energy (0.1-0.8 nm) [e.g., Hudson & Willson, 1983; Hudson, 1991]
 - TIM measurement: total is 150 times the GOES X-ray energy [Woods et al., JGR, 2006]
 - Flare energy (2-6 x 10^{32} ergs) is comparable to CME energy (~ 10^{32} ergs)

Future Irradiance Observations for SC 24

ESA SOLAR installed on ISS in February 2008

- Includes TSI and SSI from 17 nm to 3000 nm
- Glory TIM and PICARD will continue TSI but no SSI observations
 - TSIS (TIM + SIM) re-selected to be on NPOESS, could launch 2013
- SDO EVE and GOES XRS-EUVS will improve EUV with 100% duty cycle
- PROBA-2 LYRA will have high time cadence (2009 launch)

Wavelength	Previous & SC 23	Current Measurements	Future SC 24
Range	Measurements		Measurements
TSI (all λs)	ERBE, ACRIM, VIRGO, SORCE TIM, ESA SOLAR	1360 1359 1358 TIM TSI	Glory TIM (2009) PICARD (2009)
Visible-NIR (400-2400 nm)	SORCE SIM, ESA SOLAR (plus limited results from ESA SCIAMACHY & SOLSPEC)	3.540 3.536 3.532 3.532 3.528 SIM 656 nm	NPOESS TSIS (2013)
FUV-MUV-NUV	SBUV, UARS, SORCE		NOAA SBUV
(120-400 nm)	SOLSTICE, ESA SOLAR		(no FUV though)
EUV	GOES XRS, SOHO SEM,	0.0010 XPS	SDO EVE (2009)
(0.1-120 nm)	TIMED SEE, ESA SOLAR	0.0005 MMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMM	GOES EXIS (2014)
		0.0000	

2004

2005

2006

2007

Example SDO EVE Solar EUV Spectrum

- Recent calibration rocket for TIMED SEE flew on April 14 and had on-board the prototype SDO EVE
 - EVE has 0.1 nm spectral resolution from 5 to 105 nm

Proxy Concept for GOES XRS

- GOES-10 X-Ray Sensor (XRS) is only one operational and its pointing platform could fail at any time
- \succ NOAA may need realtime X-ray proxy soon (< 3 min latency). Some options include:
 - SORCE XPS can use TDRSS for realtime data with 60% duty cycle
 - SDO EVE launches into GEO (2009) and will have 100% duty cycle
 - SOHO SEM its data latency is too slow
 - TIMED SEE only has 3% duty cycle

@R@E

