E-Print Archive

There are 4352 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Structure of magnetic fields in NOAA active regions 0486 and 0501 and in the associated interplanetary ejecta View all abstracts by submitter

Vasyl Yurchyshyn   Submitted: 2005-04-22 19:31

Spectacular burst of solar activity in October - November 2003, when large solar spots and intense solar flares dominated the solar surface for many consecutive days, caused intense geomagnetic storms. In this paper we analyze solar and interplanetary magnetic fields associated with the storms in October - November 2003. We used space and ground based data in order to compare the orientations of the magnetic fields on the solar surface and at 1AU as well as to estimate parameters of geomagnetic storms during this violent period of geomagnetic activity. Our study further supports earlier reports on the correlation between the CME speed and the strength of the magnetic field in an interplanetary ejecta. A good correspondence was also found between directions of the helical magnetic fields in interplanetary ejecta and in the source active regions. These findings are quite significant in terms of their potential to predict the severity of geomagnetic activity 1 - 2 days in advance, immediately after an earth-directed solar eruption.

Authors: Vasyl Yurchyshyn, Qiang Hu and Valentyna Abramenko
Projects: Soho-EIT

Publication Status: Space Weather J., accepted
Last Modified: 2005-04-22 19:31
Go to main E-Print page  STATISTICAL DISTRIBUTIONS OF SPEEDS OF CORONAL MASS EJECTIONS  Implementing a Magnetic Charge Topology Model for Solar Active Regions  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University