E-Print Archive

There are 4352 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
STATISTICAL DISTRIBUTIONS OF SPEEDS OF CORONAL MASS EJECTIONS View all abstracts by submitter

Vasyl Yurchyshyn   Submitted: 2005-04-22 19:40

We studied the distribution of plane of sky speeds determined for 4315 coronal mass ejections (CMEs) detected by Large Angle and Spectrometric Coronagraph Experiment on board Solar and Heliospheric Observatory (SOHO/LASCO). We found that the speed distributions for accelerating and decelerating events are nearly identical and to a good approximation they can be fitted with a single log-normal distribution. This finding implies that, statistically, there is no physical distinction between the accelerating and the decelerating events. The log-normal distribution of the CME speeds suggests that the same driving mechanism of a non-linear nature is acting in both slow and fast dynamical types of CMEs.

Authors: V. Yurchyshyn, S. Yashiro, V. Abramenko, H. Wang, N. Gopalswamy
Projects: None

Publication Status: 2005, Astrophys. J., 619, 599-603
Last Modified: 2005-04-22 19:40
Go to main E-Print page  The Role of the Kink Instability of a Long-lived Active Region AR 9604  Structure of magnetic fields in NOAA active regions 0486 and 0501 and in the associated interplanetary ejecta  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University