E-Print Archive

There are 4354 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Self and Mutual Magnetic Helicities in Coronal Magnetic Configurations View all abstracts by submitter

Stephane Regnier   Submitted: 2005-08-01 06:34

Together with the magnetic energy, the magnetic helicity is an important quantity used to describe the nature of a magnetic field configuration. In the following, we propose a new technique to evaluate various components of the total magnetic helicity in the corona for an equilibrium reconstructed magnetic field. The most meaningful value of helicity is the total relative magnetic helicity which describes the linkage of the field lines even if the volume of interest is not bounded by a magnetic surface. In addition if the magnetic field can be decomposed into the sum of a closed field and a reference field (following Berger 1999), we can introduce three other helicity components: the self helicity of the closed field, the mutual helicity between the closed field and the reference field, and the vacuum helicity (self helicity of the reference field). To understand the meaning of those quantities, we derive them from the potential field (reference) and the force-free field computed with the same boundary conditions for three different cases: a single twisted flux tube derived from the extended Gold-Hoyle solutions, a simple magnetic configuration with three balanced sources and a constant distribution of the force-free parameter, and the AR 8210 magnetic field observed from 17:13 UT to 21:16 UT on May 1, 1998. We analyse the meaning of the self and mutual helicities: the self and mutual helicities correspond to the twist and writhe of confined flux bundles, and the crossing of field lines in the magnetic configuration respectively. The main result is that the magnetic configuration of AR 8210 is dominated by the mutual helicity and not by the self helicity (twist and writhe). Our results also show that although not gauge invariant the vacuum helicity is sensitive to the topological complexity of the reference field.

Authors: Regnier, S., Amari, T., Canfield, R.C.
Projects:

Publication Status: Accepted in A&A
Last Modified: 2005-08-01 06:35
Go to main E-Print page  Measurement of the Energy Release Rate and the Reconnection Rate in Solar Flares  The Magnetic Structure of Coronal Loops Observed by TRACE  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University