E-Print Archive

There are 4354 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Impact Generated Shockwaves are Proposed for the Origin of Sunspots to Explain the Detected Planetary Correlations with Solar Activity View all abstracts by submitter

Jozsef Garai   Submitted: 2009-07-03 09:39

Correlations between solar activity and the heliocentric longitudes of Jupiter, Neptune and Uranus at the time of the syzygies of Jupiter and Saturn are detected. In order to explain these correlations it is suggested that the resonance of the outer planets destabilizes the orbit of Kuiper Belt Objects and generates a cyclical impact frequency on the Sun. The vaporization of the object initiates a shock way disrupting the upwelling of the plasma resulting in a sunspot formation. The proposed model is able to explain the length of the cycle, the latitude distribution of the sunspots and the extremely long term stability of the cycles. Calculating the positions of the Jovian planets at syzygies of Jupiter and Saturn allows the long term prediction of the solar activity.

Authors: J. Garai
Projects: None

Publication Status: Submitted to Solar Physics
Last Modified: 2009-07-03 11:36
Go to main E-Print page  Relation Between Type II Bursts and CMEs Inferred from STEREO Observations  Eruptions of Magnetic Ropes in Two Homologous Solar Events of 2002  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University