E-Print Archive

There are 4354 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Outflows at the Edges of an Active Region in a Coronal Hole: A Signature of Active Region Expansion? View all abstracts by submitter

Deborah Baker   Submitted: 2009-12-07 03:14

Outflows of plasma at the edges of active regions surrounded by quiet Sun are now a common observation with the Hinode satellite. While there is observational evidence to suggest that the outflows are originating in the magnetic field surrounding the active regions, there is no conclusive evidence that reveals how they are driven. Motivated by observations of outflows at the periphery of a mature active region embedded in a coronal hole, we have used a three-dimensional simulation to emulate the active region?s development in order to investigate the origin and driver of these outflows. We find outflows are accelerated from a site in the coronal hole magnetic field immediately surrounding the active region and are channelled along the coronal hole field as they rise through the atmosphere. The plasma is accelerated simply as a result of the active region expanding horizontally as it develops. Many of the characteristics of the outflows generated in the simulation are consistent with those of observed outflows: velocities up to 45 km s-1, properties akin to the coronal hole, proximity to the active region?s draining loops, expansion with height, and projection over monopolar photospheric magnetic concentrations. Although the horizontal expansion occurs as a consequence of the active region?s development in the simulation, expansion is also a general feature of established active regions. Hence, it is entirely possible and plausible that the expansion acceleration mechanism displayed in the simulation is occurring in active regions on the Sun and, in addition to reconnection, is driving the outflows observed at their edges.

Authors: M.J. Murray, D. Baker, L. van Driel-Gesztelyi, J. Sun
Projects: Hinode/EIS

Publication Status: Accepted by Solar Physics
Last Modified: 2009-12-07 10:35
Go to main E-Print page  Automatic Detection of Limb Prominences in 304 A EUV Images  Reconnection-Driven Dynamics of Coronal-Hole Boundaries  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University