E-Print Archive

There are 4371 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
A Technique for Removing Background Features in SECCHI-EUVI He II 304 Å Filtergrams: Application to the Filament Eruption of 22 May 2008 View all abstracts by submitter

Sanjay Gosain   Submitted: 2010-01-27 02:58

The STEREO mission has been providing stereoscopic view of filament eruptions in EUV. The clearest view during a filament eruption is seen in He II 304 Å observations. One of the main problems visualizing filament dynamics in He II 304 Å is the strong background contrast due to surface features. We present a technique that removes background features and leaves behind only the filamentary structure, as seen by STEREO-A and B. The technique uses a pair of STEREO He II 304 Å images observed simultaneously. The STEREO-B image is geometrically transformed to STEREO-A view so that the background images appear similar. Filaments being elevated structures, i.e., not lying on the same spherical surface as background features, do not appear similar in the transformed view. Thus, subtracting the two images cancels the background but leaves behind the filament structure. We apply this technique to study the dynamics of the filament eruption event of 22 May 2008, which was observed by STEREO and followed by several ground-based observatories participating in the Joint Observing Programme (JOP 178).

Authors: Guy Artzner, Sanjay Gosain, Brigitte Schmieder
Projects: STEREO

Publication Status: To appear in Solar Physics (Topical Issue on Solar Image Processing Techniques)
Last Modified: 2010-01-27 14:03
Go to main E-Print page  The spatial damping of magnetohydrodynamic waves in a flowing partially ionised prominence plasma  Interplanetary shocks lacking type II radio bursts  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Poissonian origin of power laws in solar flare waiting time distributions
Correlation of the sunspot number and the waiting time distribution of solar flares, coronal mass ejections, and solar wind switchback events observed with the Parker Solar Probe
Self-organized criticality in stellar flares
Finite system-size effectrs in self-organizing criticality systems
Global energetics of solar flares. XII. Energy scaling laws
Global energetics of solar flares. XI. Flare magnitude predictions of the GOES class
Are the Magnetic Fields Radial in the Solar Polar Region?
Fast magnetoacoustic wave trains: from tadpoles to boomerangs
Multi-channel coronal hole detection with convolutional neural networks
FOXSI-2 Solar Microflares. II. Hard X-ray Imaging Spectroscopy and Flare Energetics
Structure and Evolution of an Inter–Active Region Large-scale Magnetic Flux Rope
Variation of Magnetic Flux Ropes through Major Solar Flares
MHD Modeling of Solar Coronal Magnetic Evolution Driven by Photospheric Flow
The Causes of Peripheral Coronal Loop Contraction and Disappearance Revealed in a Magnetohydrodynamic Simulation of Solar Eruption
The Sun's Dynamic Extended Corona Observed in Extreme Ultraviolet
Magnetohydrodynamic Simulations of Spicular Jet Propagation Applied to Lower Solar Atmosphere Model
Thermal Trigger for Solar Flares II: Effect of the Guide Magnetic Field
The role of non-axisymmetry of magnetic flux rope in constraining solar eruptions
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University