E-Print Archive

There are 4353 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
A nanoflare heating model for the quiet solar corona View all abstracts by submitter

Urmila Mitra-Kraev   Submitted: 2001-04-12 07:50

The energy input into the lower solar corona by flare evaporation events has been modeled according to the available observations for quiet regions. The question is addressed whether such heating events can provide the observed average level of the coronal emission measure and thus of the observed flux of extreme ultraviolet (EUV) and X-ray emission without contradicting the observed average power spectrum of the emission measure, the typical emission measure variations observed for individual pixels and the observed flare energy distribution. As the assumed flare height influences the derived flare energy, the mathematical foundations of nanoflare distributions and their conversion to different height assumptions are studied first. This also allows a comparison with various published energy distributions differing in height assumptions and to relate the observations to the input parameters of the heating model. An analytic evaluation of the power spectrum yields the relationship between the average time profile of nanoflares (or microflares), assumed to be self-similar in energy, and the power spectrum. We find that the power spectrum is very sensitive to the chosen time profile of the flares. Models are found by numerical simulation that fit all available observations. They are not unique but severely constrained. We concentrate on a model with a flare height proportional to the square root of the flare area. The existence of a fitting model demonstrates that nanoflare heating of the corona is a viable and attractive mechanism.

Authors: U. Mitra Kraev, A. O. Benz
Projects:

Publication Status: A&A (accepted)
Last Modified: 2001-04-12 07:53
Go to main E-Print page  An Evaluation of Coronal Heating Models based on Yohkoh, SoHO, and TRACE Observations  On-the-disk Development of the Halo Coronal Mass Ejection on 
May 2, 1998  Edit Entry  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role of non-axisymmetry of magnetic flux rope in constraining solar eruptions
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University