E-Print Archive

There are 4353 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Photospheric flux cancellation and associated flux rope formation and eruption View all abstracts by submitter

Bernhard Kliem   Submitted: 2010-11-05 08:52

Aims: We study an evolving bipolar active region that exhibits flux cancellation at the internal polarity inversion line, the formation of a soft X-ray sigmoid along the inversion line and a coronal mass ejection. The aim is to investigate the quantity of flux cancellation that is involved in flux rope formation in the time period leading up to the eruption. Methods: The active region is studied using its extreme ultraviolet and soft X-ray emissions as it evolves from a sheared arcade to flux rope configuration. The evolution of the photospheric magnetic field is described and used to estimate how much flux is reconnected into the flux rope. Results: About one third of the active region flux cancels at the internal polarity inversion line in the 2.5 days leading up to the eruption. In this period, the coronal structure evolves from a weakly to a highly sheared arcade and then to a sigmoid that crosses the inversion line in the inverse direction. These properties suggest that a flux rope has formed prior to the eruption. The amount of cancellation implies that up to 60% of the active region flux could be in the body of the flux rope. We point out that only part of the cancellation contributes to the flux in the rope if the arcade is only weakly sheared, as in the first part of the evolution. This reduces the estimated flux in the rope to ~ 30% or less of the active region flux. We suggest that the remaining discrepancy between our estimate and the limiting value of ~ 10% of the active region flux, obtained previously by the flux rope insertion method, results from the incomplete coherence of the flux rope, due to nonuniform cancellation along the polarity inversion line. A hot linear feature is observed in the active region which rises as part of the eruption and then likely traces out field lines close to the axis of the flux rope. The flux cancellation and changing magnetic connections at one end of this feature suggest that the flux rope reaches coherence by reconnection shortly before and early in the impulsive phase of the associated flare. The sigmoid is destroyed in the eruption but reforms quickly, with the amount of cancellation involved being much smaller than in the course of its original formation.

Authors: L. M. Green, B. Kliem, A. J. Wallace
Projects: Hinode/EIS,Hinode/XRT,SoHO-MDI,SoHO-LASCO

Publication Status: Astron. Astrophys., in press
Last Modified: 2010-11-08 07:34
Go to main E-Print page  Turbulence in the Solar Atmosphere and Solar Wind  Sigmoid-to-Flux-Rope Transition Leading to A Loop-Like Coronal Mass Ejection  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role of non-axisymmetry of magnetic flux rope in constraining solar eruptions
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University