E-Print Archive

There are 4353 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
RAPID ENHANCEMENT OF SHEARED EVERSHED FLOW ALONG THE NEUTRAL LINE ASSOCIATED WITH AN X6.5 FLARE OBSERVED BY HINODE View all abstracts by submitter

Na Deng   Submitted: 2011-05-10 12:41

We present G-band and CaII H observations of NOAA AR 10930 obtained by Hinode/SOT on 2006 December 6 covering an X6.5 flare. The Local Correlation Tracking technique was applied to the foreshortening-corrected G-band image series to acquire horizontal proper motions in this complex ??? active region. With the continuous high-quality, spatial and temporal resolution G-band data, we not only confirm the rapid decay of outer penumbrae and darkening of the central structure near the flaring neutral line, but also unambiguously detect for the first time the enhancement of the sheared Evershed flow (average horizontal flow speed increased from 330 3.1 to 403 4.6ms1) along the neutral line right after the eruptive white-light flare. Post-flare CaII H images indicate that the originally fanning out field lines at the two sides of the neutral line get connected. Since penumbral structure and Evershed flow are closely related to photospheric magnetic inclination or horizontal field strength, we interpret the rapid changes of sunspot structure and surface flow as the result of flare-induced magnetic restructuring down to the photosphere. The magnetic fields turn from fanning out to inward connection causing outer penumbrae decay, meanwhile those near the flaring neutral line become more horizontal leading to stronger Evershed flow there. The inferred enhancement of horizontal magnetic field near the neutral line is consistent with recent magnetic observations and theoretical predictions of flare-invoked photospheric magnetic field change.


Authors: Na Deng, Chang Liu, Debi Prasad Choudhary and Haimin Wang
Projects: Hinode/SOT

Publication Status: Published in ApJL
Last Modified: 2011-05-11 09:12
Go to main E-Print page  The Evolution of Sunspot Magnetic Fields Associated with a Solar Flare  Can coronal hole spicules reach coronal temperatures?  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role of non-axisymmetry of magnetic flux rope in constraining solar eruptions
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University