E-Print Archive

There are 4371 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Differential Emission Measures from the Regularized Inversion of Hinode and SDO data View all abstracts by submitter

Iain Hannah   Submitted: 2012-01-23 11:24

We develop and apply an enhanced regularization algorithm, used inRHESSI X-ray spectral analysis, to constrain the ill-posed inverseproblem that is determining the DEM from solar observations. Wedemonstrate this computationally fast technique applied to a range ofDEM models simulating broadband imaging data from SDO/AIA and highresolution line spectra from Hinode/EIS, as well as actual activeregion observations with Hinode/EIS and XRT. As this regularizationmethod naturally provides both vertical and horizontal (temperatureresolution) error bars we are able to test the role of uncertaintiesin the data and response functions. The regularization method is ableto successfully recover the DEM from simulated data of a variety ofmodel DEMs (single Gaussian, multiple Gaussians and CHIANTI DEMmodels). It is able to do this, at best, to over four orders ofmagnitude in DEM space but typically over two orders of magnitude frompeak emission. The combination of horizontal and vertical error barsand the regularized solution matrix allows us to easily determine theaccuracy and robustness of the regularized DEM. We find that thetypical range for the horizontal errors is DeltalogTapprox 0.1-0.5 and this is dependent on the observed signal to noise,uncertainty in the response functions as well as the source model andtemperature. With Hinode/EIS an uncertainty of 20% greatly broadensthe regularized DEMs for both Gaussian and CHIANTI models althoughinformation about the underlying DEMs is still recoverable. Whenapplied to real active region observations with Hinode/EIS and XRT theregularization method is able to recover a DEM similar to that foundvia a MCMC method but in considerably less computational time.

Download page contains links to both the preprint in arXiv as well as the codes used.

Authors: I. G. Hannah, E. P. Kontar
Projects: Hinode/EIS,Hinode/XRT,SDO-AIA,SDO-EVE

Publication Status: A&A (accepted)
Last Modified: 2012-01-24 11:24
Go to main E-Print page  Stability of thermal modes in cool prominence plasmas  WAVE LEAKAGE AND RESONANT ABSORPTION IN A LOOP EMBEDDED IN A CORONAL ARCADE  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Poissonian origin of power laws in solar flare waiting time distributions
Correlation of the sunspot number and the waiting time distribution of solar flares, coronal mass ejections, and solar wind switchback events observed with the Parker Solar Probe
Self-organized criticality in stellar flares
Finite system-size effectrs in self-organizing criticality systems
Global energetics of solar flares. XII. Energy scaling laws
Global energetics of solar flares. XI. Flare magnitude predictions of the GOES class
Are the Magnetic Fields Radial in the Solar Polar Region?
Fast magnetoacoustic wave trains: from tadpoles to boomerangs
Multi-channel coronal hole detection with convolutional neural networks
FOXSI-2 Solar Microflares. II. Hard X-ray Imaging Spectroscopy and Flare Energetics
Structure and Evolution of an Inter–Active Region Large-scale Magnetic Flux Rope
Variation of Magnetic Flux Ropes through Major Solar Flares
MHD Modeling of Solar Coronal Magnetic Evolution Driven by Photospheric Flow
The Causes of Peripheral Coronal Loop Contraction and Disappearance Revealed in a Magnetohydrodynamic Simulation of Solar Eruption
The Sun's Dynamic Extended Corona Observed in Extreme Ultraviolet
Magnetohydrodynamic Simulations of Spicular Jet Propagation Applied to Lower Solar Atmosphere Model
Thermal Trigger for Solar Flares II: Effect of the Guide Magnetic Field
The role of non-axisymmetry of magnetic flux rope in constraining solar eruptions
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University