E-Print Archive

There are 4354 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Surface Alfvén waves in solar flux tubes View all abstracts by submitter

Roberto Soler   Submitted: 2012-05-07 03:28

Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. Alfvén waves and magneto-sonic waves are particular classes of MHD waves. These wave modes are clearly different and have pure properties in uniform plasmas of infinite extent only. Due to plasma non-uniformity MHD waves have mixed properties and cannot be classified as pure Alfvén or magneto-sonic waves. However, vorticity is a quantity unequivocally related to Alfvén waves as compression is for magneto-sonic waves. Here, we investigate MHD waves superimposed on a one-dimensional non-uniform straight cylinder with constant magnetic field. For a piecewise constant density profile we find that the fundamental radial modes of the non-axisymmetric waves have the same properties as surface Alfvén waves at a true discontinuity in density. Contrary to the classic Alfvén waves in a uniform plasma of infinite extent, vorticity is zero everywhere except at the cylinder boundary. If the discontinuity in density is replaced with a continuous variation of density, vorticity is spread out over the whole interval with non-uniform density. The fundamental radial modes of the non-axisymmetric waves do not need compression to exist unlike the radial overtones. In thin magnetic cylinders the fundamental radial modes of the non-axisymmetric waves with phase velocities between the internal and the external Alfvén velocities can be considered as surface Alfvén waves. On the contrary, the radial overtones can be related to fast-like magneto-sonic modes.

Authors: Goossens, M.; Andries, J.; Soler, R.; Van Doorsselaere, T.; Arregui, I.; Terradas, J.
Projects: None

Publication Status: Accepted in ApJ
Last Modified: 2012-05-07 13:36
Go to main E-Print page  Long-term Variations of Solar Differential Rotation  The evolution of barbs on a polar crown filament observed by SDO  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University