E-Print Archive

There are 4353 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Self-cancellation of ephemeral regions in the quiet Sun View all abstracts by submitter

Shuhong Yang   Submitted: 2012-05-16 09:06

With the observations from the Helioseismic and Magnetic Imager aboard the Solar Dynamics Observatory, we statistically investigate the ephemeral regions (ERs) in the quiet Sun. We find that there are two types of ERs: normal ERs (NERs) and self-cancelled ERs (SERs). Each NER emerges and grows with separation of its opposite polarity patches which will cancel or coalesce with other surrounding magnetic flux. Each SER also emerges and grows and its dipolar patches separate at first, but a part of magnetic flux of the SER will move together and cancel gradually, which is described with the term ''self-cancellation'' by us. We identify 2988 ERs among which there are 190 SERs, about 6.4% of the ERs. The mean value of self-cancellation fraction of SERs is 62.5%, and the total self-cancelled flux of SERs is 9.8% of the total ER flux. Our results also reveal that the higher the ER magnetic flux is, (i) the easier the performance of ER self-cancellation is, (ii) the smaller the self-cancellation fraction is, and (iii) the more the self-cancelled flux is. We think that the self-cancellation of SERs is caused by the submergence of magnetic loops connecting the dipolar patches, without magnetic energy release.

Authors: Shuhong Yang, Jun Zhang, Ting Li, Yang Liu
Projects: SDO-HMI

Publication Status: Accepted for publication in ApJL
Last Modified: 2012-05-16 12:33
Go to main E-Print page  Simultaneous Observations of a Large-Scale Wave Event in the Solar Atmosphere: From Photosphere to Corona  Relation between the CME acceleration and the non-thermal flare characteristics  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role of non-axisymmetry of magnetic flux rope in constraining solar eruptions
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University