E-Print Archive

There are 4354 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Simultaneous Observations of a Large-Scale Wave Event in the Solar Atmosphere: From Photosphere to Corona View all abstracts by submitter

Yuandeng Shen   Submitted: 2012-05-17 05:20

For the first time, we report a large-scale wave that was observed simultaneously in the photosphere, chromosphere, transition region and low corona layers of the solar atmosphere. Using the high temporal and high spatial resolution observations taken by the Solar Magnetic Activity Research Telescope at Hida Observatory and the Atmospheric Imaging Assembly (AIA) onboard Solar Dynamic Observatory, we find that the wave evolved synchronously at different heights of the solar atmosphere, and it propagated at a speed of 605 km s-1 and showed a significant deceleration (-424 m/s2) in the extreme-ultraviolet (EUV) observations. During the initial stage, the wave speed in the EUV observations was 1000 km s-1, similar to those measured from the AIA 1700 Å (967 km s-1) and 1600 Å (893 km s-1) observations. The wave was reflected by a remote region with open fields, and a slower wave-like feature at a speed of 220 km s-1 was also identified following the primary fast wave. In addition, a type-II radio burst was observed to be associated with the wave. We conclude that this wave should be a fast magnetosonic shock wave, which was firstly driven by the associated coronal mass ejection and then propagated freely in the corona. As the shock wave propagated, its legs swept the solar surface and thereby resulted in the wave signatures observed in the lower layers of the solar atmosphere. The slower wave-like structure following the primary wave was probably caused by the reconfiguration of the low coronal magnetic fields, as predicted in the field-line stretching model.

Authors: Yuandeng Shen, Yu Liu
Projects: SDO-AIA

Publication Status: Accepted for publication in ApJL
Last Modified: 2012-05-17 12:39
Go to main E-Print page  Evidence for the Wave Nature of an Extreme Ultraviolet Wave Observed by the Atmospheric Imaging Assembly Onboard the Solar Dynamics Observatory  Self-cancellation of ephemeral regions in the quiet Sun  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University